Research on the Performance of Prestressed High-Strengh Bolted Joints of Fully-Prefabricated Long-Span Spatial Structures
-
摘要: 创新全装配式大跨度预应力钢结构体系是其智能建造的基础,构建了预应力-高强度螺栓连接节点,研究了关键参数对节点性能的影响规律。采用ABAQUS有限元软件建立节点有限元模型,通过将试验结果与节点抗弯性能数值模拟结果进行对比分析,验证了节点模型的准确性与可靠性。在此基础上,设计54组节点算例对影响节点抗拉/压性能的各因素开展了参数化分析,提出了节点抗拉/压设计方法。结果表明:增加圆盘厚度可显著提高节点的抗拉/压性能;降低开孔角钢厚度可适当提高节点抗拉屈服荷载,但降低了节点抗压极限荷载;节点抗拉/压极限荷载均随开孔十字板厚度增加而提高;套筒高度变化对节点抗拉/压性能影响均较小;增加初始预紧力可提高节点初始抗拉刚度,但降低了其初始抗压刚度。Abstract: In order to promote the innovation and intelligent construction of fully-prefabricated long-span prestressed steel structures, a novel joint which named prestressed high-strength bolted (PHSB) joint was constructed. The influence of key parameters on the performance of PHSB joints was studied. The finite element (FE) model of PHSB joints was established by using ABAQUS FE software, and the accuracy and reliability of the joint model were verified by comparing the experimental results with the numerical simulation results. In the parametric, 54 FE models were established to study the effects of different parameters on tensile/compressive properties of PHSB joints. After that, the tension/compression design method of the joints was proposed. The results indicated that the tensile/compressive properties of the joints could significantly improve with the disc thickness increased; reducing the thickness of the perforated angle steel could appropriately increased the tensile yield load, but reduce its ultimate compressive load; the ultimate tensile/compressive load increased with the increase of perforated cross plate thickness; the change of the sleeve height had little effect on the tensile/compressive properties; moreover, increasing the initial prestress could increase the initial tensile stiffness, but reduce its initial compressive stiffness.
-
[1] 沈世钊, 武岳. 结构形态学与现代空间结构[J]. 建筑结构学报, 2014, 35(4): 1-10. [2] 董石麟, 邢栋, 赵阳. 现代大跨空间结构在中国的应用与发展[J]. 空间结构, 2012, 18(1): 3-16. [3] 张爱林, 葛家琪, 刘学春. 2008奥运会羽毛球馆大跨度新型弦支穹顶结构体系的优化设计选定[J]. 建筑结构学报, 2007,28(6): 1-9. [4] 张爱林, 刘廷勇, 张艳霞, 等. 基于智能建造的快速全装配大跨度预应力空间钢结构体系创新研究展望[J]. 北京工业大学学报, 2020, 46(6): 591-603. [5] 陈龙中, 童乐为, 陈扬骥. 网架结构大直径螺栓球节点锥头承载力计算式[J]. 建筑结构学报, 2012, 33(3): 62-69. [6] 张晓磊, 李会军, 陈旭, 等. 嵌入式毂节点刚度及其单层球面网壳承载力研究[J]. 工程力学, 2022, 39(9): 179-190. [7] 马建伟, 陈志华, 郝会芬, 等. 关节轴承节点在钢结构中的应用研究综述[J]. 建筑结构, 2018, 48(23): 92-100,84. [8] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7—2010[S]. 北京: 中国建筑工业出版社, 2011. [9] 范峰, 马会环, 马越洋. 半刚性节点网壳结构研究进展及关键问题[J]. 工程力学, 2019, 36(7): 1-7,29. [10] LEE S L, SEE T, SWADDIWUDHIPONG S, et al. Development and testing of a universal space frame connector[J]. International Journal of Space Structures, 1990, 5(2): 130-138. [11] SWADDIWUDHIPONG S, KOH C G, LEE S L. Development and experimental investigation of a space frame connector[J]. International Journal of Space Structures, 1994, 9(2): 99-106. [12] AHMADIZADEH A M, MAALEB S. An investigation of the effects of socket joint flexibility in space structures[J]. Journal of Constructional Steel Research, 2014,102: 72-81. [13] ANDRASE S A L, VELLASCO P C G, SILA J G S. Tubular space trusses with simple and reinforced end-flattened nodes-an overview and experiments [J]. Journal of Constructional Steel Research, 2005, 61(8): 1025-1050. [14] MA H H, MA Y Y, FAN F. Experimental and numerical research on gear-bolt joint for free-form grid spatial structures[J]. Engineering Structures, 2017, 148: 522-540. [15] 陈伟刚, 邓华, 白光波, 等. 弯剪状态下铝合金板式节点的静力试验及有限元分析[J]. 空间结构, 2016, 22(3): 56-63. [16] ZHANG A L, LIU T Y, ZHANG Y X, et al. Experimental and numerical research on mechanical behavior of prestressed high-strength bolt joint[J]. Journal of Constructional Steel Research, 2021, 182(7): 1-21. [17] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015. [18] 中华人民共和国住房和城乡建设部. 建筑抗震设计标准:GB/T 50011—2010[S]. 北京: 中国建筑工业出版社, 2024.
点击查看大图
计量
- 文章访问数: 69
- HTML全文浏览量: 11
- PDF下载量: 3
- 被引次数: 0