Research on Mechanical Properties of UHPC Encased CFSTs Under Eccentrically Compressive Loading
-
摘要: UHPC包覆钢管混凝土叠合构件具有耐久性能优越和承载力高等优势。为研究其偏压性能,进行了4根UHPC包覆钢管混凝土叠合柱偏压试验,主要参数为偏心距和长细比。基于试验结果,考察了不同参数对试件的破坏特征、荷载-变形关系曲线、极限承载力、二阶效应和延性的影响规律,结果表明:钢纤维的存在减轻了外围UHPC的破坏程度,内钢管混凝土的存在使试件具有较好的延性。试件偏压承载力随偏心距的增加下降明显,其中偏心距从0~80 mm时对承载力影响最显著。同时,二阶效应对试件偏压承载力影响显著,随着偏心距和长细比的增加,二阶效应产生的弯矩占总弯矩比重达到36.5%。基于试验实测结果,探讨了采用现行规范提供的方法计算UHPC包覆钢管混凝土叠合柱偏压承载力的适用性。Abstract: Ultral-high-performance concrete (UHPC) encased concrete-filled steel tubes (CFST) have advatages such as superior durability and high bearing capacity.Four CFST columns with varying eccentricity and slenderness ratios were experimentally tested to examine their mechanical properties.Based on the test results,the failure characteristics, load-deformation responses, ultimate eccentric bearing capacity, second-order effects, and ductility were investigated. The results revealed that the incorporation of steel fibers significantly reduced the failure degree of the outer UHPC, while the inner CFST offered the column specimens good ductility. It was noted that the eccentric bearing capacity decreased markedly with the increasing eccentricity, particularly in the range of 0-80 mm. Moreover, second-order effects had a substantial impact on the eccentric bearing capacity, contributing up to 36.5% of the total moment as eccentricity and slenderness ratio increased. The study’s findings were used to discuss the applicability of existing code provisions for calculating the eccentric bearing capacity of UHPC encased CFST columns.
-
Key words:
- UHPC encased /
- CFST /
- composite member /
- eccentrically compressive loading
-
[1] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. [2] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9): 36-41. [3] HAI L H, LIAO F Y, TAO Z, et al. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending[J]. Journal of Constructional Steel Research, 2009, 65 (8):1607-1616. [4] LI W, XU L F, QIAN W W. Seismic performance of 3-D steel beam to concrete-encased CFST column joints: tests[J]. Engineering Structures, 2021, 232(4), 111793. [5] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究[J]. 土木工程学报, 2016, 49(10): 11-17. [6] 吴庆雄, 佘智敏, 袁辉辉, 等. 钢管混凝土箱形叠合柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(6): 108-117. [7] JIN L, LIANG J, CHEN F, et al. Prediction of the plastic hinge length for square CFST stocky columns[J]. Thin-Walled Structures, 2022, 181, 110104. [8] 廖飞宇, 赵剑, 尧国皇, 等. 钢管混凝土叠合柱-混凝土梁节点滞回性能的有限元分析[J]. 建筑钢结构进展, 2019, 21(5): 1-12. [9] LIAO F Y, HAN L H, TAO ZH. Behaviour of composite joints with concrete encased CFST columns under cyclic loading: experiments[J]. Engineering Structures, 2014, 59:745-764. [10] CHEN J Y, WANG F C, HAN L H, et al. Flexural performance of concrete-encased CFST box members[J]. Structures, 2020, 27:2034-2047. [11] 陈宝春, 李莉, 罗霞, 等. 超高强钢管混凝土研究综述[J]. 交通运输工程学报, 2020, 20(5): 1-21. [12] HUA J Y, HUANG Y F, LI W J, et al. Compressive behaviour of UHPC-filled square high-strength steel tube stub columns under eccentric loading[J]. Journal of Constructional Steel Research, 2022, 198, 107558. [13] RUI Z, SHIMING C, PING G, et al. Structural behavior of UHPC filled steel tubular columns under eccentric loading[J]. Thin-Walled Structures, 2020, 156, 106959. [14] 陈振新, 胡红松, 许力, 等. 内配螺旋箍筋方钢管超高强混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(增刊2): 288-294. [15] CHEN H Y, LIAO F Y, YANG Y X, et al. Behavior of ultra-high-performance concrete (UHPC) encased concrete-filled steel tubular (CFST) stub columns under axial compression[J]. Journal of Constructional Steel Research, 2023, 202, 107795. [16] HE S H, YANG G, ZHOU W J, et al. Evaluation of shear lag effect in HSS-UHPC composite beams with perfobond strip connectors: Experimental and numerical studies[J]. Journal of Constructional Steel Research, 2022, 194, 107312. [17] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183-194. [18] YAN Y X, XU L H, LI B, et al. Axial behavior of ultra-high performance concrete (UHPC) filled stocky steel tubes with square sections[J]. Journal of Constructional Steel Research, 2019, 158:417-428. [19] 罗霞, 韦建刚, 韩金鹏, 等. 高强钢管超高强混凝土短柱偏压力学性能试验研究[J]. 建筑结构学报, 2021, 42(增刊2): 271-277. [20] 王秋维, 王福星, 王程伟. 圆钢管UHPC短柱偏压力学性能与承载力计算研究[J]. 建筑结构, 2024(9): 1-8. [21] 吴方红, 曾彦钦, 徐礼华, 等. 圆形钢管含粗骨料超高性能混凝土中长柱偏压力学性能试验研究[J]. 工程力学, 2023, 40(增刊1): 191-199, 206. [22] 安钰丰. 方形钢管混凝土叠合压弯构件力学性能和设计方法研究[D]. 北京:清华大学, 2015. [23] 廖飞宇, 韩林海. 方形钢管混凝土叠合柱的力学性能研究[J]. 工程力学, 2010, 27(4): 153-162. [24] 中国工程建设标准化协会. 钢管混凝土叠合柱结构技术规程:T/CECS 188—2019[S]. 北京: 中国建筑工业出版社, 2020. [25] 中华人民共和国住房和城乡建设部.混凝土结构设计标准:GB/T 50010—2010[S].北京:中国建筑工业出版社, 2024. [26] TAO Z, HAN L H, WANG Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns[J]. Journal of Constructional Steel Research, 2005, 61(7): 962-983.
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0