Experimental Research on the Behavior of UHPC-Encased CFST Composite Columns Subjected to Lateral Impact Loading
-
摘要: 使用超高重型落锤冲击试验系统对四根固定轴压比条件下的UHPC包覆钢管混凝土叠合柱构件进行侧向冲击试验。对冲击全过程的试件冲击力和位移响应进行了研究,对比分析了试件在不同冲击速度和不同钢管直径下冲击过程中与冲击后的损伤和失效特点。试验结果表明:UHPC包覆钢管混凝土叠合柱构件在中低速冲击下表现出弯曲破坏,仅出现少量竖向裂缝,在更高的冲击速度下UHPC未剥落,表明UHPC包覆钢管混凝土叠合柱构件优异的抗冲击性能。冲击速度的提升显著提高了构件的冲击力和位移响应,冲击耗能也随之增大。增大钢管直径能够有效提高构件的刚度,小幅度降低动态位移响应,但对冲击力响应影响不大。
-
关键词:
- UHPC包覆钢管混凝土叠合柱 /
- 侧向冲击 /
- 动力响应 /
- 抗冲击性能 /
- 破坏形态
Abstract: A ultra-high super-heavy drop hammer impact test system was employed to conduct lateral impact tests on four UHPC-Encased CFST composite columns (UECC) with fixed axial load ratio. The impact force and displacement responses of the specimens throughout the impact process were studied, and the damage and failure characteristics of the specimens during and after impact under different impact velocities and steel tube diameters were comparatively analyzed. The experimental results showed that the UECC specimens exhibited bending failure at medium to low impact velocities, with only few vertical cracks appearing. At higher impact velocities, the outer UHPC were not spalling, indicating excellent impact resistance of the UECC. Notably, an increase in impact velocity significantly improved the impact force and displacement response of the specimens, accompanied by a proportional rise in impact energy. Furthermore, enlarging the steel tube diameter proved effective in enhancing component stiffness, marginally reducing dynamic displacement response, while exerting minimal influence on impact force responses. -
[1] 廖飞宇, 韩林海. 方形钢管混凝土叠合柱的力学性能研究[J]. 工程力学, 2010, 27(4): 153-162. [2] 韩林海, 陶忠, 王文达. 现代组合结构和混合结构:试验、理论和方法[M]. 北京: 科学出版社, 2009. [3] SUN L, WU W, LI W. Analysis on axial compressive capacity of hybrid fiber cement-based composites encased CFST columns[J/OL]. Archives of Civil and Mechanical Engineering, 2022, 22(4)[2022-09-02].https://doi.org/10.1007/s43452-022-00517-2. [4] LI W, WANG Z, LI L, et al. Cyclic tests and finite element analysis on hybrid fiber-cement-based composite encased CFST columns[J]. Structures, 2023, 58, 105591. [5] CHEN H Y, LIAO F Y, YANG Y X, et al. Behavior of ultra-high-performance concrete (UHPC) encased concrete-filled steel tubular (CFST) stub columns under axial compression[J]. Journal of Constructional Steel Research, 2023, 202, 107795. [6] WU Q, SHE Z, YUAN H. Experimental study of UHPC-encased CFST stub columns under axial compression[J]. Structures, 2021, 32: 433-447. [7] 吴庆雄, 许志坤, 袁辉辉, 等. 外包超高性能混凝土钢管混凝土叠合短柱轴压性能试验研究[J]. 建筑结构学报, 2023, 44(12): 183-193. [8] GAO X L, SHEN S Y, CHEN G X, et al. Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns[J]. Engineering Structures, 2023, 278, 115315. [9] WU Q X, XU Z K, YUAN H H, et al. Ultimate bearing capacity of UHPC-encased CFST medium-long columns under axial compression[J]. Magazine of Concrete Research, 2023, 75(10): 487-505. [10] AYOUGH P, WANG Y H, ZENG W, et al. Numerical investigation and design of UHPC-encased CFST stub columns under axial compression[J]. Engineering Structures, 2024, 302, 117387. [11] 吴庆雄, 许志坤, 袁辉辉, 等. 外包UHPC钢管混凝土叠合短柱偏压性能研究[J/OL]. 工程力学, 2023, 40[2023-11-27].https://link.cnki.net/urlid/11.259503.20231124.1301.008. [12] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究[J]. 土木工程学报, 2016, 49(10): 11-17. [13] 王刚, 包延红. 侧向撞击荷载作用下方套方形钢管混凝土叠合柱动力响应的数值研究[J]. 青海大学学报, 2023, 41(6): 32-40. [14] 贾志路, 王蕊. 侧向冲击下箱形钢管混凝土叠合柱动力响应试验研究[J]. 建筑结构学报, 2017, 38(增刊1): 165-171. [15] HU C M, HAN L H, HOU C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: analytical behaviour[J]. Journal of Constructional Steel Research, 2018, 146: 135-154. [16] HOU C C, HAN L H, WANG F C, et al. Study on the impact behaviour of concrete-encased CFST box members[J]. Engineering Structures, 2019, 198, 109536. [17] HOU C C, HAN L H, LIANG Z S, et al. Performance of concrete-encased CFST subjected to low-velocity impact: shear resistance analysis[J]. International Journal of Impact Engineering, 2021, 150, 103798. [18] 住房和城乡建设部标准定额研究所.混凝土物理力学性能试验方法标准:GB 50081—2019[S]. 北京: 中国标准出版社, 2019. [19] 全国混凝土标准化技术委员会.活性粉末混凝土:GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015.
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0