Damage Constitutive Model of Concrete Under Industrial SO2 Corrosive Environment
-
摘要: 为研究工业环境SO2腐蚀混凝土的应力-应变特征,揭示SO2腐蚀混凝土力学性能损伤规律,开展了工业SO2环境混凝土腐蚀试验,分析了水胶比(0.37、0.47、0.57)、粉煤灰掺量(0%、10%、20%)和不同腐蚀循环次数对混凝土损伤层厚度、应力-应变曲线、峰值应力、峰值应变及弹性模量的影响。基于损伤力学理论,建立工业环境SO2腐蚀混凝土单轴压缩损伤本构模型。结果表明:混凝土损伤层厚度随着SO2循环次数的增加而增大,变化规律符合指数函数关系;SO2腐蚀后混凝土试件的峰值应力下降,峰值应变增加,弹性模量下降,曲线下降段变陡峭,变形能力降低,表现出明显脆性破坏特征。掺加粉煤灰可以减缓SO2腐蚀损伤速率,提高混凝土抵抗SO2腐蚀的能力。Abstract: To investigate the stress-strain characteristics of concrete under industrial SO2 corrosion, and evaluate the mechanical characteristics of concrete, the concrete corrosion tests in industrial SO2 environment were conducted to analyze the effects of water-to-cement ratio (0.37, 0.47 and 0.57), fly ash content (0%, 10% and 20%), and SO2 cycling times on the danage thickness of damage layers, stress-strain curves, peak stress, peak strain, and elastic modulus. A constitutive model was formulated by using the principles of damage mechanics theory. The results indicated that the thickness of the damage layer rose as the quantity of SO2 cycles increased, with the change adhering to an exponential function correlation. The specimens experienced a decrease in peak stress, an increase in peak strain, and a decrease in elastic modulus after being corroded by SO2. The downward slope of the curve became steeper, significantly reducing the deformation capacity and ultimately exhibiting characteristics of a brittle failure. Adding fly ash could mitigate the corrosion rate of SO2 and enhance the concrete resistance against SO2 corrosion.
-
Key words:
- concrete /
- industrial environment /
- SO2 corrosion /
- damage layer thickness /
- constitutive model
-
[1] SHAO R, WU C, LI J. A comprehensive review on dry concrete: Application, raw material, preparation, mechanical, smart and durability performance[J]. Journal of Building Engineering, 2022, 55, 104676. [2] MEDINA C, ZHU W, HOWIND T, et al. Influence of mixed recycled aggregate on the physical-mechanical properties of recycled concrete[J]. Journal of Cleaner Production, 2014, 68: 216-225. [3] LUHAR S G S. A review paper on self healing concrete[J]. Journal of Civil Engineering Research, 2015,5(3): 53-58. [4] LYU Y, NIU D T, LIU X G, et al. Corrosion damage and life prediction of concrete structure in the coking ammonium sulfate workshop of iron and steel industry[J/OL]. Scientific Reports[2024-02-19]. https://doi.org/10.1038/s41598-023-30015-1. [5] 牛荻涛, 吕瑶, 刘西光. 混凝土硫化性能研究进展[J]. 材料导报, 2017, 31(23): 163-170. [6] NIU D T, LV Y, LIU X G, et al. Study on the sulfuration mechanism of concrete: microstructure and product analysis[J]. Materials, 2020, 13(15), 3386. [7] 于忠, 胡蔚儒. 化工大气环境中混凝土的腐蚀机理及性能研究[J]. 工业建筑, 2000,30(5): 16-20. [8] NIU J G, WU B, ZHU C, et al. Corrosion rules for ordinary concrete exposed to sulfur dioxide-containing environments[J]. Toxicological and environmental chemistry, 2015, 97(3/4): 367-378. [9] 牛建刚, 吴斌, 杨鹏飞. 二氧化硫条件下粉煤灰混凝土的腐蚀性能研究[J]. 混凝土, 2016(3): 56-59. [10] WANG J, NIU D T, SONG Z. Damage layer thickness and formation mechanism of shotcrete with and without steel fiber under sulfate corrosion of dry-wet cycles by ultrasound plane testing method[J]. Construction and Building Materials, 2016, 123: 346-356. [11] GUAN X, CHEN J, QIU J, et al. Damage evaluation method based on ultrasound technique for gangue concrete under freezing-thawing cycles[J]. Construction and Building Materials, 2020, 246, 118437. [12] DEMČENKO A, VISSER H A, AKKERMAN R. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure[J]. NDT & E International, 2016, 77: 63-72. [13] ZHANG D, ZHANG T, YANG Q. Mechanical properties and damage layer thickness of green concrete under a low-temperature environment[J]. Materials, 2022, 15(21), 7409. [14] FU Q, WANG Z H, BU M X, et al. Constitutive behaviour and modelling of hybrid basalt-polypropylene fibre-reinforced concrete considering coupling effect of fibre reinforcement and mechanical damage[J]. Materials and Structures, 2022, 55(6), 155. [15] ZHANG Y, MA Z, ZHI X, et al. Damage characteristics and constitutive model of phosphogypsum/fly ash/slag recycled aggregate concrete under uniaxial compression[J]. Cement and Concrete Composites, 2023, 138, 104980. [16] BIAN H, LIU Y, GUO Y, et al. Investigating stress-strain relationship and damage constitutive model of basalt fiber reinforced concrete under uniaxial compression[J]. Journal of Building Engineering, 2023, 73, 106789. [17] DA B, YU H, MA H, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials, 2016, 122: 81-89. [18] CHANG Y F, CHEN Y H, SHEU M S, et al. Residual stress-strain relationship for concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2006, 36(10): 1999-2005. [19] LIU X, WU T, LIU Y. Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete[J]. Construction and Building Materials, 2019, 225: 256-272. [20] 牛荻涛, 吕瑶, 刘西光, 等. 一种混凝土硫化试验模拟系统及其模拟方法: CN113237825A [P]. 2021-08-10. [21] 吕瑶, 牛荻涛, 刘西光, 等. 典型工业环境下混凝土硫化机理与预测模型[J]. 建筑材料学报, 2022, 25(6): 621-627. [22] 李月晨. 武汉钢铁工业区混凝土结构耐久性环境区划研究[D]. 西安: 西安建筑科技大学, 2014. [23] 中国工程建设标准化协会. 超声法检测混凝土缺陷技术规程: CECS 21—2000[S].北京: 中国建筑工业出版社, 2001. [24] LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1983, 80(2): 233-245.
点击查看大图
计量
- 文章访问数: 36
- HTML全文浏览量: 2
- PDF下载量: 3
- 被引次数: 0