Effects of Final Cooling Temperature on Low-Temperature Impact Fracture Behavior of Q500 Weathering Bridge Steel
-
摘要: 针对高原复杂环境桥梁建设工程,开发屈服强度500 MPa级别的高抗冲击、韧脆转变温度低的耐候桥梁钢。研究了轧制后终冷温度对试验钢的微观组织和力学性能的影响,深入分析了低温对试验钢冲击韧性的影响。结果表明:经控轧控冷(TMCP)处理后试验钢满足Q500级桥梁钢的力学性能要求,且在-40~-80 ℃的低温环境下,两种不同终冷温度(500、550 ℃)的试验钢均表现出良好的冲击性能。但随终冷温度的升高,试验钢晶粒尺寸增加;马氏体/奥氏体(M/A)岛尺寸增加、形态改变;大角度晶界比例降低是造成两种试验钢冲击性能差异的主要原因。Abstract: For the bridge construction project in the complex environment of the plateau, the high impact resistance and low tough-brittle transition temperature weathering bridge steel with a yield strength of 500 MPa has been developed. The effects of the final cooling temperature after rolling on the microstructure and mechanical properties of the experimental steels were studied, and the effects of low temperature on the impact toughness of the experimental steels were analyzed in depth. The results showed that the experimental steels after TMCP treatment could meet the mechanical property requirements of Q500 grade bridge steel, and the experimental steels with two different final cooling temperatures (500, 550 ℃) showed good impact properties under the low-temperature environment of -40 to -80 ℃. However, with the increase of final cooling temperature, the grain size of experimental steels increased; the increase of M/A island size and change of morphology and the decrease of the proportion of large-angle grain boundaries were the main reasons for the difference in impact properties of the two experimental steels.
-
[1] 田志强, 孙力, 刘建磊, 等. 国内外耐候桥梁钢的发展现状[J]. 河北冶金, 2019(2): 11-13,25. [2] 张子曰. 川藏铁路沿线气象风险特征分析[D]. 兰州:兰州大学, 2019. [3] 程鹏, 黄先球, 庞涛,等. 耐候桥梁钢的研究现状与发展趋势[J]. 材料保护, 2020, 53(7): 142-146. [4] 高新亮. 耐候桥梁钢成分设计与组织性能研究[D]. 沈阳:东北大学, 2013. [5] 彭宁琦, 何航, 罗登,等. 高强韧耐候桥梁钢Q500qENH的生产工艺[J]. 金属热处理, 2021, 46(8): 139-144. [6] BHADESHIA H K D H. Developments in martensitic and bainitic steels: role of the shape deformation[J]. Materials Science and Engineering: A, 2004, 378(1): 34-39. [7] MORITO S, HUANG X, FURUHARA T, et al. The morphology and crystallography of lath martensite in alloy steels[J]. Acta Materialia, 2006, 54(19): 5323-5331. [8] LI Y, BAKER T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels[J]. Materials Science and Technology, 2013, 26(9): 1029-1040. [9] 朱雯婷, 崔君军, 陈振业, 等. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352. [10] 雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用[J]. 科技创新导报, 2009(8): 2-3. [11] 吕昭平, 蒋虽合, 何骏阳, 等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52(10): 1183-1198. [12] 高云. 面心立方金属中小角度晶界与位错交互作用机理的分子动力学模拟研究[D]. 上海:上海交通大学, 2017. [13] 冯阳.460 MPa级建筑结构用钢设计及组织性能研究[D]. 沈阳:东北大学, 2020. [14] WANG Q, YE Q, WANG Z, et al. Thickness effect on microstructure, strength, and toughness of a quenched and tempered 178 mm thickness steel plate[J]. Metals-Open Access Metallurgy Journal, 2020, 10(5), 572. [15] ZHU W T, CUI J J, CHEN Z Y, et al. Correlation of microstructure feature with impact fracture behavior in a TMCP processed high strength low alloy construction steel[J]. Acta Metallurgica Sinica (English Letters), 2021,35(4): 1-10. [16] 刘悦, 胡军, 高彩茹, 等. 超低碳V-N-Cr微合金化Q690F级耐候钢组织性能控制及强韧机理分析[C]//第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会论文集. 重庆: 2017: 33-42. [17] 王红涛,田勇,叶其斌等. 100 mm厚度EH47高止裂韧性钢板组织与性能研究[C]//第十三届中国钢铁年会论文集. 重庆:2022.
点击查看大图
计量
- 文章访问数: 11
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0