Experimental Research on Compression-Bending Behavior of Composite Shear Walls with Lattice Columns by Using Mortise-Tenon Connections
-
摘要: 为推进装配式剪力墙研究进程,提出了一种由钢管混凝土组合柱与钢缀板通过榫卯连接组合而成的新型钢-混凝土组合剪力墙,设计并完成了4个榫卯格构柱组合剪力墙试件在水平单调荷载作用下的压弯试验。结果表明:剪力墙试件破坏时,两侧方钢管柱均达到屈服,受拉方钢管一侧柱底焊缝撕裂,另一侧柱底受压出现不同程度的局部屈曲现象,墙中部混凝土裂缝开展不明显,墙体损伤得以控制;减小剪跨比或增大方钢管壁厚,试件的刚度和水平承载力得到明显提高,中部混凝土裂缝发展得以抑制;对柱底进行局部加固对试件各项性能的提升最为显著;试件极限位移角平均值为1/39,位移延性系数平均值为3.56,具备良好的塑性发展及变形能力。同时,建立有限元模型并与试验结果进行对比验证,误差分析表明,有限元模型合理可靠,可用于后续分析研究。Abstract: In order to advance the research on prefabricated shear walls, this paper proposes a new type of steel-concrete composite shear wall consisting of concrete-filled steel tubes and steel batten-plates using mortise-tenon connections. Four specimens were designed and tested under monotonic horizontal loading to study their compression-bending performance. The experimental results indicated that when the composite shear wall failed, the square steel tube columns on both sides yielded, with weld fracture occurring at the bottom of the tensile square steel tube column and varying degrees of local buckling appearing at the bottom of the compressive column, while the crack propagation in the exposed concrete of the middle of the tested walls was not serious, indicating effective damage control. By reducing the shear-span ratio or increasing the wall thickness of the square steel tube, the stiffness and horizontal bearing capacity of the specimen were significantly improved, and the crack propagation was suppressed. In addition, the local reinforcement at the bottom of the column exhibited the most significant improvement in the performance of the specimen. The average value of the ultimate drift angle was 1/39, and the ductility factor was 3.56. A finite element model was established and validated against the test results, with the deviation analysis showing that the model is reasonable and reliable for subsequent parametric studies.
-
[1] 中华人民共和国住房和城乡建设部. 装配式混凝土建筑技术标准:GB/T 51231—2016[S]. 北京:中国建筑工业出版社,2016. [2] 武晓东,童乐为. 带方钢管混凝土端柱隔板连接双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报,2019,40(12):41-50. [3] 方小丹,李青,韦宏,等. 钢管高强混凝土剪力墙压弯性能试验研究[J]. 建筑结构学报,2013,34(8):72-81. [4] 纪晓东,蒋飞明,钱稼茹,等. 钢管-双层钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报,2013,34(6):75-83. [5] 白亮,梁兴文,邓博团. 不同参数型钢高性能混凝土剪力墙抗震性能研究[J]. 工程力学,2011,28(7):151-156. [6] 吕西林,董宇光,丁子文. 截面中部配置型钢的混凝土剪力墙抗震性能研究[J]. 地震工程与工程振动,2006(6):101-107. [7] 聂建国,胡红松,李盛勇,等. 方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报,2013,34(1):52-60. [8] CAO W,ZHANG J,DONG H,et al. Research on seismic performance of shear walls with concrete filled steel tube columns and concealed steel trusses[J]. Earthquake Engineering and Engineering Vibration,2011,10:535-546. [9] 崔龙飞,蒋欢军,吕尚文. 内置钢板与内置钢桁架混凝土组合剪力墙抗震性能对比研究[J]. 建筑结构学报,2013,34(3):132-140. [10] 胡红松. 外包钢板-混凝土组合连梁及在剪力墙结构中的应用研究[D]. 北京:清华大学,2014. [11] 舒兴平. 一种榫卯格构柱多功能组合剪力墙:CN217537420U[P]. 2022-10-04. [12] 国家质量监督检验检疫总局. 金属材料 室温拉伸试验方法:GB/T 228—2002[S]. 北京:中国建筑工业出版社,2002. [13] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019. [14] 中华人民共和国住房和城乡建设部. 组合结构设计规范:JGJ 138—2016[S]. 北京:中国建筑工业出版社,2016. [15] 冯鹏,强翰霖,叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学,2017,34(3):36-46. [16] 中华人民共和国住房和城乡建设部. 建筑抗震试验方法规程:JGJ 101—2015[S]. 北京:中国建筑工业出版社,2015. [17] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社,2007. [18] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准:GB/T 50010—2010[S]. 北京:中国建筑工业出版社,2024. -
点击查看大图
计量
- 文章访问数: 70
- HTML全文浏览量: 11
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: