Research on Corrosion Behavior of 550 MPa Weathering Bridge Steel in Simulated Industrial Atmosphere
-
摘要: 通过周期浸润腐蚀试验研究了550 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为,结合扫描电子显微镜、X射线衍射和电子探针等测试方法对锈层微观形貌特征、腐蚀产物物相组成、锈层截面形貌以及元素分布规律进行了观察和分析,并讨论了高强耐候桥梁钢的耐大气腐蚀机理。结果表明:在模拟工业大气环境下,Q550qENH-A钢和Q550qENH-B钢的腐蚀失重率随腐蚀时间的延长呈现初期快速下降、后期趋于平稳的趋势,并且两种耐候钢的耐腐蚀性能均优于Q345B。Cr和Ni元素在两种耐候钢的锈层中发生富集,促进了α-FeOOH腐蚀产物的生成,提高了锈层结构的稳定性和致密性,锈层对腐蚀介质的阻碍作用得到增强,因此表现出优异的耐大气腐蚀性能。Abstract: The corrosion behavior of 550 MPa weathering bridge steel in simulated industrial atmosphere was investigated by cyclic immersion corrosion tests. The microscopic morphology, phase composition of corrosion products, cross section morphology and element distribution of rust layer were observed and analyzed by means of scanning electron microscope, X-ray diffraction and electron probe. The mechanism of atmospheric corrosion resistance of high-strength weathering bridge steel was also discussed. The results indicated that the corrosion weight loss rate of Q550qENH-A steel and Q550qENH-B steel decreased rapidly at the initial stage and tended to be stable at the later stage with the extension of corrosion time in the simulated industrial atmosphere, and the corrosion resistance of the two kinds of weathering steels were better than that of Q345B. Cr and Ni were enriched in the rust layer of two kinds of weathering steels, which promoted the formation of α-FeOOH and improved the stability and compactness of the rust layer structure, thus the blocking effect of the rust layer on the corrosion medium was enhanced. Therefore, the weathering steels showed excellent atmospheric corrosion resistance.
-
[1] 程鹏, 黄先球, 庞涛,等. 耐候桥梁钢的研究现状与发展趋势[J]. 材料保护, 2020, 53(7): 142-146. [2] 田志强, 孙力, 刘建磊,等. 国内外耐候桥梁钢的发展现状[J]. 河北冶金, 2019(2): 11-13,25. [3] 王春生, 张静雯, 段兰,等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. [4] 郑凯锋, 张宇, 衡俊霖,等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3):1-10. [5] 邹德辉, 郭爱民. 我国铁路桥梁用钢的现状与发展[J]. 钢结构, 2009, 24(9): 1-5,56. [6] 王玉博, 翟晓亮, 梁智涛,等. 耐候桥梁钢在模拟工业大气环境中的腐蚀行为研究[J]. 材料保护, 2022, 55(12): 84-90. [7] 杨颖, 侯华兴, 张哲,等. Q500qENH耐候桥梁钢在模拟工业大气环境中的腐蚀行为[J]. 腐蚀与防护, 2017, 38(4): 256-261. [8] 李琳, 徐小连, 艾芳芳,等. 晶粒尺寸对桥梁耐候钢耐大气腐蚀性能的影响[J]. 腐蚀与防护, 2013, 34(11): 1001-1004. [9] 杨景红, 刘清友, 王向东,等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007(6): 367-372. [10] MORCILLO M, FUENTE D, DÍAZ I, et al. Atmospheric corrosion of mild steel[J]. Revista De Metalurgia, 2011, 47: 426-444. [11] 程鹏, 刘静, 黄峰,等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572. [12] NISHIMURA T, KODAMA T. Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses[J]. Corrosion Science, 2003, 45(5): 1073-1084. [13] EVANS U R. The mechanism of rusting[J]. Quarterly Reviews, Chemical Society, 1967, 21(1): 29-42. [14] DE LA FUENTE D, DÍAZ I, SIMANCAS J, et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science, 2011, 53(2): 604-617. [15] YAMASHITA M, UCHIDA H. Recent research and development in solving atmospheric corrosion problems of steel industries in Japan[C]//Industrial Applications of the Mössbauer Effect: Proceedings of ISIAME 2000. Virginia Beach: 2000. [16] NISHIMURA T, KATAYAMA H, NODA K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments[J]. Corrosion Science, 2000, 42(9): 1611-1621.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0