Analysis of Tensioning Time for Composite Beam-String Structures Considering Solar Radiation Effects
-
摘要: 弦支钢-混组合梁张拉施工过程完全暴露于日照辐射环境下,结构张拉成型时刻的温度远高于环境温度且呈现明显的时空非均匀性特征。为明确不均匀温度作用对弦支组合梁力学性能的影响,参考一实际工程案例开展弦支组合梁的不均匀温度及温度效应研究。首先通过现场试验与精细化数值模拟获取了上弦组合梁沿其横向与纵向的温度分布规律,并给出了组合梁关键截面在不同时刻的温度梯度模型;接着为实现考虑结构整体不均匀温度影响的弦支梁高效计算,提出一种四分梁单元模拟方法,并采用ANSYS有限元软件预演了不同张拉时刻的结构初始不均匀温度场对结构使用阶段力学响应的影响规律,发现各项力学性能指标大小均随张拉时刻呈“V”形变化,通过对比给出了结构最优张拉时机为13:00。Abstract: During the tensioning construction process, the composite beam-string structure is fully exposed to solar radiation. At the moment of structural forming through tensioning, its temperature exceeds ambient levels while demonstrating obvious non-uniformity. In order to clarify the influence of non-uniform temperature effects on the structure’s mechanical properties, a simplified simulation method for non-uniform temperature loads was proposed based on a practical project, and the finite element software ANSYS was used to numerically simulate the structure’s mechanical properties at different tensioning stages under solar exposure. First, field tests and refined numerical simulations were conducted to obtain the temperature distribution patterns along both transverse and longitudinal directions of the top chord composite beam. A temperature gradient model was subsequently established for critical beam sections at various stages. For efficient computation of the beam-string structure considering global non-uniform temperature effects, a quartered beam element simulation method was proposed. Using the finite element software ANSYS, the influence of initial non-uniform temperature fields at different tensioning stages on the structure’s mechanical performance during service life was simulated, and the magnitudes of all mechanical property indicators change in a V shape with the tensioning time. Through a comparison, the optimal tensioning opportunity for the structure was 13:00.
-
[1] 凯尔别克 F. 太阳辐射对桥梁结构的影响[M].刘兴法,译. 北京:中国铁道出版社,1981. [2] 刘红波,樊泽源,张智升. 典型金属结构太阳辐射非均匀温度作用计算方法[J]. 工业建筑,2016,46(11):19-24,58. [3] LIU H B,LI B,CHEN Z H,et al. Solar radiation properties of common membrane roofs used in building structures[J]. Materials& Design,2016,105(9):268-277. [4] 张智升. 大跨度空间结构温度效应研究[D]. 天津:天津大学,2016. [5] 仝晓莉,陈志华,赵中伟,等. 考虑施工影响的大跨度钢结构温度效应及敏感性研究[J]. 工业建筑,2018,48(8):141-146. [6] CHEN D S,WANG H J,QIAN H L,et al. Experimental and numerical investigation of temperature effects on steel members due to solar radiation[J]. Applied Thermal Engineering:Design,Processes,Equipment,Economics,2017,127(12):696-704. [7] 游颖,张泽涛,周清富. 非均匀温度场作用下空间钢结构温度分布及应力分析[J]. 结构工程师,2021,37(2):60-65. [8] 崔建华,余琼,张琳,等. 山东航海实训中心非均匀温度场及温度效应研究[J]. 建筑结构,2017,47(18):99-104. [9] 王化杰,陈友,钱宏亮,等. 网架模型日照非均匀温度场试验[J]. 哈尔滨工业大学学报,2018,50(1):191-198. [10] 周勐,樊健生,刘宇飞,等. 北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究[J]. 工程力学,2020,37(5):46-54,73. [11] 高飞,陈潘,翁顺,等. 非均匀日照条件下结构的三维温度场分析[J]. 土木工程与管理学报,2018,35(4):1-6. [12] 李博,刘红波,周婷. 膜下索穹顶太阳辐射非均匀温度效应研究[J]. 工业建筑,2016,46(11):13-18. [13] ZHAO Z W,LIU H B,CHEN Z H. Thermal behavior of large-span reticulated domes covered by ETFE membrane roofs under solar radiation[J]. Thin-Walled Structures,2017,115:1-11. [14] 周婷,杨慧杰,刘红波,等. 超高层矩形钢管混凝土柱太阳辐射下截面温度场分析[J]. 工业建筑,2016,46(11):29-32,79. [15] 周婷,杨慧杰,胡建军,等. 暴露环境下矩形钢管混凝土构件截面温度场实测研究[J]. 建筑结构,2020,50(7):80-85. [16] YAN Y,WU D,LI Q. A three-dimensional method for the simulation of temperature fields induced by solar radiation[J]. Advances in Structural Engineering,2019,22(3):567-580. [17] ZHOU Q,ZHOU J,FENG P,et al. Full-scale experimental study on temperature field of large-diameter CFST arch bridges under strong radiation and large daily ambient temperature difference[J]. Journal of Civil Structural Health Monitoring,2022,12(5):1247-1263. [18] YANG D,CHEN G,DING X,et al. Thermal field of large-diameter concrete filled steel tubular members under solar radiation[J]. Computers and Concrete,An International Journal,2020,26(4):343-350. [19] 文强. 弦支钢-混组合梁考虑日照辐射影响的施工控制方法研究[D]. 重庆:重庆交通大学,2022. -
点击查看大图
计量
- 文章访问数: 44
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: