中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市密集建筑区新型地震次生灾害研究进展

陆新征 岳清瑞 许镇 王一星 顾栋炼 田源

陆新征, 岳清瑞, 许镇, 王一星, 顾栋炼, 田源. 城市密集建筑区新型地震次生灾害研究进展[J]. 工业建筑, 2024, 54(2): 25-34. doi: 10.3724/j.gyjzG23121501
引用本文: 陆新征, 岳清瑞, 许镇, 王一星, 顾栋炼, 田源. 城市密集建筑区新型地震次生灾害研究进展[J]. 工业建筑, 2024, 54(2): 25-34. doi: 10.3724/j.gyjzG23121501
LU Xinzheng, YUE Qingrui, XU Zhen, WANG Yixing, GU Donglian, TIAN Yuan. A Review on Novel Seismic Secondary Disasters in Urban Dense Building Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 25-34. doi: 10.3724/j.gyjzG23121501
Citation: LU Xinzheng, YUE Qingrui, XU Zhen, WANG Yixing, GU Donglian, TIAN Yuan. A Review on Novel Seismic Secondary Disasters in Urban Dense Building Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 25-34. doi: 10.3724/j.gyjzG23121501

城市密集建筑区新型地震次生灾害研究进展

doi: 10.3724/j.gyjzG23121501
基金项目: 

国家自然科学基金(52238011);中国工程院战略研究与咨询交办项目(2022-JB-02)。

详细信息
    作者简介:

    陆新征,男,1978年出生,博士,教授,主要从事结构数值模拟与防灾减灾研究。 电子信箱: luxz@tsinghua.edu.cn

A Review on Novel Seismic Secondary Disasters in Urban Dense Building Areas

  • 摘要: 随着经济和城镇化的发展,我国出现了大量的城市密集建筑群,包含了大量的密级高层建筑、人口和财物,是城市防震减灾工作的重要对象和新挑战。随着地震工程研究和应用的迅速发展,建筑倒塌等传统震害逐渐减少,而坠物、地震次生火灾等新型地震灾害愈发突出。这些新型灾害破坏性大,缺少有效的减灾对策。基于此,面向地震次生坠物、地震次生火灾、震后电梯人员受困、地震场地-城市效应问题等四类典型新型地震次生灾害,总结了当前关于新型地震次生灾害的初步研究成果并展望未来研究方向,以期为地震新型灾害研究提供参考。
  • [1] CORNELL C A, JALAYER F, HAMBURGER R O,et al. Probabilistic basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines[J]. Journal of Structural Engineering-asce, 2002,128:526-533.
    [2] ROSSETTO T, ELNASHAI A S. A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures[J]. Engineering Structures, 2005,27:397-409.
    [3] ELLINGWOOD B. Mitigating risk from abnormal loads and progressive collapse[J]. Journal of Performance of Constructed Facilities, 2006,20:315-323.
    [4] ZAREIAN F, KRAWINKLER H. Assessment of probability of collapse and design for collapse safety[J]. Earthquake Engineering and Structural Dynamics, 2007,36(13):1901-1914.
    [5] KHANDELWAL K, EL-TAWIL S, KUNNATH S K, et al. Macromodel-based simulation of progressive collapse:steel frame structures[J]. Journal of Structural Engineering-ASCE, 2008,134:1070-1078.
    [6] LI Y, LU X Z, GUAN H, et al. An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures[J]. Engineering Structures, 2011,33:2931-2942.
    [7] BRUNESI E, NASCIMBENE R, PARISI F, et al. Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis[J]. Engineering Structures, 2015,104:65-79.
    [8] BRUNESI E, PARISI F. Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis[J]. Engineering Structures,2017, 152:579-596.
    [9] BENTO R, SIMES A G. Seismic performance assessment of buildings[J]. Buildings,2021,11(10):440.
    [10] PEARSON C, DELATTE N J. Ronan Point apartment tower collapse and its effect on building codes[J]. Journal of Performance of Constructed Facilities, 2005,19:172-177.
    [11] YI W, HE Q, XIAO Y, et al.Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures[J]. ACI Structural Journal, 2008,105:433-439.
    [12] IZZUDDIN B A, VLASSIS A G, ELGHAZOULI A Y, et al. Progressive collapse of multi-storey buildings due to sudden column loss-Part I:simplified assessment framework[J]. Engineering Structures, 2008,30:1308-1318.
    [13] EADS L A, MIRANDA E, KRAWINKLER H, et al. An efficient method for estimating the collapse risk of structures in seismic regions[J]. Earthquake Engineering and Structural Dynamics,2013, 42(1):25-41.
    [14] ADAM J M, PARISI F, SAGASETA J, et al. Research and practice on progressive collapse and robustness of building structures in the 21st century[J]. Engineering Structures,2018,173:122-149.
    [15] EREN N A, BRUNESI E, NASCIMBENE R. Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings[J]. Engineering Structures,2019,178:375-394.
    [16] VILLAVERDE R. Methods to assess the seismic collapse capacity of building structures:state of the art[J]. Structural Engineering ASCE, 2007(133):57-66.
    [17] LU X, LU X Z, GUAN H, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes[J]. Earthquake Engineering and Structural Dynamics, 2013,(42):705-723.
    [18] XU Z, LU X Z, GUAN H, et al. Progressive-collapse simulation and critical region identifi cation of a stone arch bridge[J]. Journal of Performance of Constructed Facilities ASCE, 2013, 27(1):43-52.
    [19] LI Y, LU X Z, GUAN H, et al. An energy-based assessment on dynamic amplification factor for linear static analysis in progressive collapse design of ductile RC frame structures[J]. Advances in Structural Engineering, 2014,17:1217-1225.
    [20] ELLIDOKUZ H, UCKU R, AYDIN U Y, et al. Risk factors for death and injuries in earthquake:cross-sectional study from Afyon, Turkey[J]. Croatian Medical Journal, 2015,(46):613-618.
    [21] JOHNSTON D, STANDRING S, RONAN K, et al. The 2010/2011 Canterbury earthquakes:context and cause of injury[J]. Natural Hazards, 2014,73(2):627-637.
    [22] LU X Z, YANG Z B, GIAN P C, et al. Pedestrian evacuation simulation under the scenario with earthquake-induced falling debris[J]. Safety Science, 2019, 114:61-67.
    [23] CALVIG M, BOLOGNINI D.Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels[J]. Journal of Earthquake Engineering,2001,5(2):153-185.
    [24] ANGEL R,ABRAMS D P,SHAPIRO D,et al. Behavior of reinforced concrete frames with masonry infills[R].Urbana:University of Illinois Engineering Experiment Station. University of Illinois at Urbana-Champaign,1994.
    [25] DAWE J L,SEAH C K. Out-of-plane resistance of concrete masonry infilled panels[J].Canadian Journal of Civil Engineering,1989,16(6):854-864.
    [26] TU Y H,LIU P M,LIN H P.Out-of-plane experimental response of strong masonry infills[C]//Structures Congress:New Horizons and Better Practices. Long Beach:ASCE,2007:1-10.
    [27] TU Y H,CHUANG T H,LIU P M,et al.Out-of-plane shaking table tests on unreinforced masonry panels in RC frames[J]. Engineering Structures,2010,32(12):3925-3935.
    [28] HAK S,MORANDI P,MAGENES G.Out-of-plane experimental response of strong masonry infills[C]//European Conference on Earthquake Engineering and Seismology. 2014:139-144.
    [29] DAFNIS A,KOLSCH H,REIMERDES H,et al. Arching in masonry walls subjected to earthquake motions[J]. Journal of Structural Engineering, 2002, 128(2):153-159.
    [30] XIE X X, QU Z, FU H R, et al. Effect of prior in-plane damage on the out-of-plane behavior of masonry infill walls[J]. Engineering Structures, 2021, 226:111380.
    [31] LU X Z, YANG Z B, CHEA C, et al. Experimental study on earthquake-induced falling debris of exterior infill walls and its impact to pedestrian evacuation[J]. International Journal of Disaster Risk Reduction, 2020, 43:101372.
    [32] TIAN Y, YANG Z B, CHEN W, et al. Pseudo static experimental study on spider-supported glass curtain walls[J]. Glass Structures and Engineering, 2022, 7:681-691.
    [33] XU Z, LU X Z, GUAN H, TIAN Y, et al. Simulation of earthquake-induced hazards of falling exterior non-structural components and its application to emergency shelter design[J]. Natural Hazards, 2016, 80(2):935-950.
    [34] QUAGLIARINI E, BERNARDINI G, WAZINSKI C, et al. Urban scenarios modifications due to the earthquake:ruins formation criteria and interactions with pedestrians'evacuation[J]. Bulletin of Earthquake Engineering, 2016,14(4):1071-1101.
    [35] BERNARDINI G, D'ORAZIO M, QUAGLIARINI E. Towards a "behavioural design" approach for seismic risk reduction strategies of buildings and their environment[J]. Safety Science, 2016,(86):273-294.
    [36] YU J, ZHANG C R, WEN J H, et al. Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters[J]. International Journal of Geographical Information Science, 2018, 32(9):1884-1910.
    [37] ZLATESKI A, LUCESOLI M, BERNARDINI G, et al. Integrating human behaviour and building vulnerability for the assessment and mitigation of seismic risk in historic centres:proposal of a holistic human-centred simulation-based approach[J]. International Journal of Disaster Risk Reduction, 2020,43:101392.
    [38] D'ORAZIO M, QUAGLIARINI E, BERNARDINI G, et al. EPES-Earthquake pedestrians'evacuation simulator:a tool for predicting earthquake pedestrians'evacuation in urban outdoor scenarios[J]. International Journal of Disaster Risk Reduction, 2014, 10:153-177.
    [39] D'ORAZIO M, SPALAZZI L, QUAGLIARINI E, et al. Agent-based model for earthquake pedestrians'evacuation in urban outdoor scenarios:behavioural patterns definition and evacuation paths choice[J]. Safety Science,2014, 62:450-465.
    [40] OSARAGI T, MORISAWA T, OKI T. Simulation model of evacuation behavior following a large-scale earthquake that takes into account various attributes of residents and transient occupants[C]//The 6th International Conference on Pedestrian and Evacuation Dynamics. Zurich, Swiss:2012.
    [41] DE IULIIS M, BATTEGAZZORRE E, DOMANESCHI M, et al. Large scale simulation of pedestrian seismic evacuation including panic behavior[J]. Sustainable Cities and Society, 2023,94:104527.
    [42] 杨哲飚.城市多尺度地震灾害情境模拟及可视化[D].北京:清华大学,2022.
    [43] SATHIPARAN N. Mesh type seismic retrofitting for masonry structures:critical issues and possible strategies[J]. European Journal of Environmental and Civil Engineering, 2015, 19(9):1136-1154.
    [44] SUZUKI K, MATSUBARA Y. Causes and Progress of Fires Following the 1995 Southern Hyogo Prefecture Earthquake, in:Proceedings of Annual Meeting[J]. Japan Association for Fire Science and Engineering, 1998:154-157.
    [45] TOMOAKI N, TAKEYOSHI T, AKIHIKO H. An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation[J]. Fire Safety Journal,2012,54:167-180.
    [46] MURATA A, IWAMI T, HOKUGO A, et al. Mechanism of the outbreak of fire in the 1995 Hyogo-Ken Nambu Earthquake:in comparison with past earthquake fire cases[J]. Journal of Architecture and Planning (Transactions of AIJ), 2001, 66:1-8.
    [47] ZHAO S, XIONG L Y, REN A Z. A spatial-temporal stochastic simulation of fire outbreaks following earthquake base on GIS[J]. Fire Safety, 2006,24(4):313-339.
    [48] ZOLFAGHARI M R, PEYGHALEH E, NASIRZADEH G. Fire following earthquake, intrastructure ignition modeling[J]. Fire Safety, 2009, 27(1):45-79.
    [49] DAVIDSON R A. Modeling postearthquake fire ignitions using generalized linear (mixed) models[J]. Journal of Infrastructure Systems, 2009(15):351-360.
    [50] YILDIZ S S, KARAMAN H. Post-earthquake ignition vulnerability assessment of Küçükçekmece district[J]. Natural Hazards and Earth System Sciences Discussions, 2013, 1(3):2005-2040.
    [51] ANDERSON D, DAVIDSON R A, HIMOTO K, et al. Statistical modeling of fire occurrence using data from the Tōhoku Japan earthquake and tsunami[J]. Risk Analysis, 2016,36(2):183-430.
    [52] REN A Z, XIE X Y. The simulation of post-earthquake fire-prone area based on GIS[J]. Journal of Fire Sciences,2004, 22(5):421-439.
    [53] HAMADA M. On the rate of five spread, disaster research[R]. Japan:Norlife Insur. Rating Organ. Japan 1, 1951:35-44.
    [54] LEE S W, DAVIDSON R A. Physics-based simulation model of post-earthquake fire spread[J]. Journal of Earthquake Engineering, 2010, 14(5):670-687.
    [55] LEE S W, DAVIDSON R A. Application of a physics-based simulation model to examine post-earthquake fire spread[J]. Journal of Earthquake Engineering, 2010, 14(5):688-705.
    [56] MENG X J, ZHAO J P. Cellular automata modeling of fire spread based on post-earthquake fire risk assessment of urban area[J]. Advanced Materials Research, 2011,368-373:732-738.
    [57] ZHAO S J. Simulation of mass fire-spread in urban densely built areas based on irregular coarse Cellular automae[J].Fire Technology, 2011,47(3):721-749.
    [58] RAFIA M M, AZIZ T, LODI S H. A suggested model for mass fire spread[J]. Sustainable and Resilient Infrastructure, 2020, 5(4):214-231.
    [59] THOMAS G, HERON D, COUSINS J, et al. Modeling and estimating post-earthquake fire spread[J]. Earthquake Spectra,2012, 28(2):795-810.
    [60] COUSINS J, THOMAS G, HERON D, et al. Probabilistic modeling of post-earthquake fire in Wellington, New Zealand[J]. Earthquake Spectra, 2012, 28(2):553-571.
    [61] HIMOTO K, MUKAIBO K, AKIMOTO Y, et al. A physics-based model for post-earthquake fire spread considering damage to building components caused by seismic motion and heating by fire[J]. Earthquake Spectra, 2013, 29(3):793-816.
    [62] HU L H, FONG N K, YANG L Z, et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:fire dynamics simulator comparisons with measured data[J]. Journal of Hazardous Materials, 2007,140(1-2):293-298.
    [63] CHA M, HAN S, LEE J, et al. A virtual reality based fire training simulator integrated with fire dynamics data[J]. Fire Safety Journal, 2012,50:12-24.
    [64] ZALOK E, HADJISOPHOCLEOUS G V. Assessment of the use of fire dynamics simulator in performance-based design[J]. Fire Technology, 2011,47(4):1081-1100.
    [65] ŠULC S,ŠMILAUER V, PATZÁK B, et al. Linked simulation for fire-exposed elements using CFD and thermo-mechanical models[J]. Advances in Engineering Software, 2019,131:12-22.
    [66] LU X Z, ZENG X, XU Z, et al. Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage[J]. Journal of Earthquake Engineering,2019,23(7):1173-1193.
    [67] JEON J, JUNG W, JU B S. Evaluation of seismic performance of 2-story fire protection sprinkler piping system[J]. Environmental Engineering Science,2014,10(3):458-464.
    [68] KIM J, MEACHAM B J, PARK H, et al. Fire performance of a full-scale building subjected to earthquake motions:test specimen, seismic motions and performance of fire protection systems[J]. Fire Safety Science, 2014,11:732-745.
    [69] SEKIZAWA A, EBIHARA M, NOTAKE H. Development of seismic-induced fire risk assessment method for a building[J]. Fire Safety Science, 2003(7):309-320.
    [70] XU Z, ZHANG Z C, LU X Z, et al. Post-earthquake fire simulation considering overall seismic damage of sprinkler systems based on BIM and FEMA P-58[J].Automation in Construction,2018,90:9-22.
    [71] SUAREZ L E,SINGH M P.Seismic response of rail-counterweight systems of elevators[C]//Proceeding of the 11th World Conference on Earthquake Engineering. Acapulco,Mexico:1996.
    [72] SUAREZ L E,SINGH M P.Dynamics and response of rail-counterweight systems under strong seismic motions[C]//Proceedings of the 6th US National Conference on Earthquake Engineering. Seattle, Washington:1998.
    [73] PORTER K. Fragility of hydraulic elevators for use in performance-based earthquake engineering[J]. Earthquake Spectra, 2007,23(2):459-469.
    [74] PORTER K. Seismic fragility of traction elevators[J]. Earthquake Engineering and Structural Dynamics, 2016,45(5):819-833.
    [75] WANG X, HUTCHINSON T C, ASTROZA R, et al. Shake table testing of an elevator system in a full-scale five-story building[J]. Earthquake Engineering and Structural Dynamics, 2017,46(3):391-407.
    [76] SINGH M P,SUAREZLE L E,RILDOVA. Seismic response of rail-counterweight systems in elevators[J]. Earthquake Engineering and Structural Vibration,2002,31(2):281-303.
    [77] SINGH M P,RILDOVA,SUAREZ L E. Non-linear seismic response of the rail-counterweight system in elevators in buildings[J]. Earthquake Engineering and Structural Dynamics,2004,33(2):249-270.
    [78] LU X Z, GUAN H. Earthquake disaster simulation of civil infrastructures:from tall buildings to urban areas (2nd Edition)[M]. Springer, Singapore:2021.
    [79] GU D L, WANG Y X, LU X Z,et al. Probability-based city-scale risk assessment of passengers trapped in elevators under earthquakes[J]. Sustainability,2023, 15:4829.
    [80] BARD P Y, CHAZELAS J L, GUGUEN P, et al. Assessing and managing earthquake risk:geo-scientific and engineering knowledge for earthquake risk mitigation:developments, tools, techniques[M]. Dordecht, Netherlands:Springer, 2006.
    [81] ZHANG B, XIONG F, LU Y, et al. Regional seismic damage analysis considering soil-structure cluster interaction using lumped parameter models:a case study of Sichuan University Wangjiang Campus buildings[J]. Bulletin of Earthquake Engineering,2021,19(11):4289-4310.
    [82] BOUTIN C, SOUBESTRE J, SCHWAN L, et al. Multi-scale modeling for dynamics of structure-soil-structure interactions[J]. Acta Geophysica, 2014, 62(5):1005-1024.
    [83] SCHWAN L, BOUTIN C, PADRÓN L A, et al. Site-city interaction:theoretical,numerical and experimental crossed-analysis[J]. Geophysical Journal International, 2016, 205(2):1006-1031.
    [84] UENISHI K. The town effect:dynamic interaction between a group of structures and waves in the ground[J]. Rock Mechanics and Rock Engineering, 2010, 43(6):811-819.
    [85] CLOUTEAU D, BROC D, DEVSA G, et al. Calculation methods of structure-soil-structure interaction (3SI) for embedded buildings:application to NUPEC tests[J]. Soil Dynamics and Earthquake Engineering, 2012,32(1):129-142.
    [86] SAHAR D, NARAYAN J P, KUMAR N. Study of role of basin shape in the site-city interaction effects on the ground motion characteristics[J]. Natural Hazards, 2015, 75(2):116-1186.
    [87] SAHAR D, NARAYAN J P. Quantification of modification of ground motion due to urbanization in a 3D basin using viscoelastic finite-difference modelling[J]. Natural Hazards, 2016, 81(2):779-806.
    [88] SEMBLAT J F, KHAM M, BARD P Y. Seismic-wave propagation in alluvial basins and influence of site-city interaction[J]. Bulletin of the Seismological Society of America, 2008, 98(6):2665-2678.
    [89] SEMBLAT J F, KHAM M,GUGUEN P,et al. Site-city interaction through modifications of site effects[C]//EERI. 7th US Conference on Earthquake Engineering. Boston,United States:2002.
    [90] ISBILIROGLU Y, TABORDA R, BIELAK J. Coupled soil-structure interaction effects of building clusters during earthquakes[J]. Earthquake Spectra, 2015, 31(1):463-500.
    [91] LU X Z, TIAN Y, WANG G, et al. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site-city interaction effects[J]. Earthquake Engineering and Structural Dynamics,2018,47(13):2708-2725.
    [92] TIAN Y, CHEN S Y, LIU S M, et al. Influence of tall buildings on the city-scale seismic response analysis:a case study of Shanghai CBD[J]. Soil Dynamics and Earthquake Engineering.,2023, 173:108063.
  • 加载中
计量
  • 文章访问数:  192
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 网络出版日期:  2024-04-23

目录

    /

    返回文章
    返回