中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅粉对低热硅酸盐水泥混凝土基本力学性能的影响

郭建强

郭建强. 硅粉对低热硅酸盐水泥混凝土基本力学性能的影响[J]. 工业建筑, 2024, 54(4): 195-199. doi: 10.3724/j.gyjzG23121118
引用本文: 郭建强. 硅粉对低热硅酸盐水泥混凝土基本力学性能的影响[J]. 工业建筑, 2024, 54(4): 195-199. doi: 10.3724/j.gyjzG23121118
GUO Jianqiang. Influence of Silica Fume Content on the Basic Mechanical Properties of Low-Heat Portland Cement Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 195-199. doi: 10.3724/j.gyjzG23121118
Citation: GUO Jianqiang. Influence of Silica Fume Content on the Basic Mechanical Properties of Low-Heat Portland Cement Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 195-199. doi: 10.3724/j.gyjzG23121118

硅粉对低热硅酸盐水泥混凝土基本力学性能的影响

doi: 10.3724/j.gyjzG23121118
基金项目: 

国家自然科学基金项目(51808351)。

详细信息
    作者简介:

    郭建强,硕士,高级工程师,主要从事建筑材料与混凝土性能方面的研究。25351576@qq.com

Influence of Silica Fume Content on the Basic Mechanical Properties of Low-Heat Portland Cement Concrete

  • 摘要: 随着低热硅酸盐水泥在水利工程中的广泛应用,对低热硅酸盐水泥混凝土的力学性能提出了更高的要求。采用水下钢球法量化硅粉掺量(0、3%和5%)对低热硅酸盐水泥混凝土基本力学性能和其他力学性能的影响进行研究。结果表明:掺入硅粉可有效提高低热硅酸盐水泥混凝土的抗冲磨性能,当掺量由0增大至3%和5%时,抗冲磨性能分别提高了12.2%和14.6%;相比于不掺入硅粉的混凝土,当掺入3%硅粉时,低热硅酸盐水泥混凝土的抗压强度和劈裂抗拉强度分别降低约3.5%~6.0%、3.8%~11.1%;轴向拉伸性能(轴向拉伸强度和极限拉伸值)提高约7.0%;当掺入5%硅粉时,低热硅酸盐水泥混凝土的抗压强度、劈裂抗拉强度和轴向拉伸性能分别提高约3.6%~7.0%、2.8%~3.5%、6.9%~14.8%。可见,硅粉掺量为5%的低热硅酸盐水泥混凝土具有相对理想的力学性能。
  • [1] 余舟,王磊,杨华全,等.中低热水泥混凝土抗冲耐磨及抗裂性能试验研究[J].人民长江, 2018, 49(增刊2):238-242.
    [2] 杨华全,李文伟,王迎春,等.低热硅酸盐水泥在三峡工程中的应用[J].人民长江, 2007, 38(1):10-13.
    [3] 孙明伦,胡泽清,石妍,等.低热硅酸盐水泥在泄洪洞工程中的应用研究[J].人民长江, 2011, 42(增刊2):157-159.
    [4] 陈荣,娄鑫.低热硅酸盐水泥在白鹤滩水电站导流洞工程中的应用[J].水利水电技术, 2015, 46(增刊2):1-4.
    [5] LIU Y W. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume[J]. Construction&Building Materials, 2007, 21(5):972-977.
    [6] HUI L, ZHANG M H, OU J P. Abrasion resistance of concrete containing nano-particles for pavement[J]. Wear, 2006, 260(12):1262-1266.
    [7] YEN T, HSU T H, LIU Y W. Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete[J]. Construction&Building Materials, 2007, 21(2):458-463.
    [8] YAZICIŞ,İNAN G. An investigation on the wear resistance of high strength concretes[J]. Wear, 2006, 260(6):615-618.
    [9] CAI X, ZHEN H, TANG S, et al. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test[J]. Construction&Building Materials, 2016, 127:804-814.
    [10] 杨进忠,王璟玉,张立勇,等.硅粉高性能混凝土抗冲磨试验研究[J].人民黄河, 2009, 31(6):102-103.
    [11] 王磊,何真,杨华全,等.硅粉增强混凝土抗冲磨性能的微观机理[J].水利学报, 2013, 44(1):111-118.
    [12] 蔡新华,何真,查进,等.冲磨速率和角度对海工混凝土抗冲磨性能的影响[J].建筑材料学报, 2013, 16(5):782-786.
    [13] 余舟,王磊,杨华全.不同掺合料对水工混凝土抗冲磨性能的影响研究[J].混凝土, 2019(6):96-99.
    [14] KOUMPOURI D, ANGELOPOULOS G N. Effect of boron waste and boric acid addition on the production of low energy belite cement[J]. Cement and Concrete Composites, 2016, 68:1-8.
    [15] JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement&Concrete Research, 2016, 82:50-57.
    [16] STANĚK T, SULOVSKÝ P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015, 68:203-210.
    [17] CHEN Y L, LIN C J, KO M S, et al. Characterization of mortars from belite-rich clinkers produced from inorganic wastes[J]. Cement&Concrete Composites, 2011, 33(2):261-266.
    [18] WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. Journal of Cleaner Production, 2018, 203(1):540-558.
    [19] WANG L, DONG Y, ZHOU S H, et al. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials[J]. Energy&Buildings, 2018, 170(6):157-169.
    [20] WANG L, JIN M M, WU Y H, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials[J/OL]. Construction and Building Materials, 2021, 272(2)[2020-12-01] https://doi.org/10.1016/j.conbuildmat.2020.121952.
    [21] 全国水泥制品标准化技术委员会.中热硅酸盐水泥、低热硅酸盐水泥:GB/T 200-2017[S].北京:中国标准出版社, 2017.
    [22] 电力行业水电施工标准化技术委员会.水工混凝土掺用粉煤灰技术规范:DL/T 5055-2007[S].北京:中国标准出版社, 2007.
    [23] 全国水泥制品标准化技术委员会.砂浆和混凝土用硅灰:GB/T 27690-2011[S].北京:中国标准出版社, 2011.
    [24] 电力行业水电施工标准化技术委员会.水工混凝土施工规范:DL/T 5144-2015[S].北京:中国标准出版社, 2015.
    [25] 电力行业水电施工标准化技术委员会.水工混凝土外加剂技术规程:DL/T 5100-2014[S].北京:中国标准出版社, 2014.
    [26] 电力行业水电施工标准化技术委员会.水工混凝土试验规程:DL/T 5150-2017[S].北京:中国标准出版社, 2017.
    [27] 张海洋,郭军,张旭慧,等.粉煤灰和硅粉对高性能混凝土抗压强度的影响[J].中外公路, 2014, 34(3):312-316.
    [28] PEDRO D, BRITO J D, EVANGELISTA L. Evaluation of highperformance concrete with recycled aggregates:Use of densified silica fume as cement replacement[J]. Construction and Building Materials, 2017, 147(8):803-814.
    [29] 李清富,孙振华,张海洋.粉煤灰和硅粉对混凝土强度影响的试验研究[J].混凝土, 2011(5):77-79.
    [30] ZHANG P, LI Q F, ZHANG H Y. Combined effect of polypropylene fiber and silica fume on mechanical properties of concrete composite containing fly ash[J]. Journal of Reinforced Plastics and Composites, 2011, 30(16):1349-1358.
    [31] MASTALI M, DALVAND A. Use of silica fume and recycled steel fibers in self-compacting concrete (SCC)[J]. Construction and Building Materials, 2016, 125:196-209.
    [32] 吴辉琴,封冠英培,陈宇良,等.外掺硅粉混凝土早龄期强度及弹性模量试验研究[J].混凝土, 2021(2):86-88, 92.
    [33] EMMANUEL R, RACHID C, AHMED L. Tensile behaviour of early age concrete:New methods of investigation[J]. Cement and Concrete Composites, 2015, 55:153-161.
    [34] 杨林,宋帅奇,杨静.硅灰对塑性混凝土工作性能和强度的影响[J].混凝土, 2012(12):43-45, 49.
    [35] 郭丽萍,雷东移,陈波,等.硅粉表面改性及其分散效果评价[J].表面技术, 2018, 47(7):146-151.
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回