中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实测数据的台风边界层风速剖面特征研究

黄希桂 罗胜昌 李利孝

黄希桂, 罗胜昌, 李利孝. 基于实测数据的台风边界层风速剖面特征研究[J]. 工业建筑, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101
引用本文: 黄希桂, 罗胜昌, 李利孝. 基于实测数据的台风边界层风速剖面特征研究[J]. 工业建筑, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101
HUANG Xigui, LUO Shengchang, LI Lixiao. Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101
Citation: HUANG Xigui, LUO Shengchang, LI Lixiao. Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101

基于实测数据的台风边界层风速剖面特征研究

doi: 10.3724/j.gyjzG23121101
基金项目: 

国家自然科学基金(52178491);广东省自然科学基金(2021A1515011769);深圳市自然科学基金(JCYJ20210324093809023)。

详细信息
    作者简介:

    黄希桂,硕士,主要从事高层建筑抗风研究。

    通讯作者:

    李利孝,博士,主要从事结构风工程研究,lilixiao@szu.edu.cn。

Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data

  • 摘要: 目前规范中对台风影响区建筑物的抗风设计采用类比非气旋风场的方式来进行,然而大量实测结果表明台风剖面与非气旋风场风剖面存在较大差异,风剖面的影响因素和变化规律目前仍不明确。为清晰地了解台风的剖面特征及其规律,基于多个台风的实测剖面数据,以下垫面类型、台风结构分区和风速大小三类控制指标对数据进行分类,对各个类别的风剖面数据进行对比分析。研究表明:台风剖面中的近地急流层与下垫面类型、台风结构分区和风速均有关,即A、B类场地、较大风速和台风后眼壁区更易出现近地急流层;台风风剖面的梯度风高度与下垫面类型和平均风速存在着一定关系,A、B类场地的梯度风高度由台风中心向外呈增大趋势,C类场地下的梯度风高度从台风中心向外呈先减小后增大趋势。
  • [1] ELLIOTT R J R, STROBL E, SUN P. The local impact of typhoons on economic activity in China:A view from outer space[J]. Journal of Urban Economics, 2015, 88(7):50-66.
    [2] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422:279-283.
    [3] HE Y, CHAN P, LI Q. Observational study on thermodynamic and kinematic structures of Typhoon Vicente (2012) at landfall[J]. Journal of Wind Engineering Industrial Aerodynamics, 2018, 172:280-297.
    [4] LI L X, KAREEM A, HUNT J, et al. Observed sub-hectometer-scale low level jets in surface-layer velocity profiles of landfalling typhoons[J]. Journal of Wind Engineering Industrial Aerodynamics, 2019, 190:151-165.
    [5] FUJITA T T. Damage survey of hurricane andrew in south Florida[J]. Storm Data, 1992, 34(8):25-39.
    [6] WURMAN J, WINSLOW J. Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran[J]. Science, 1998, 280(5363):555-557.
    [7] KITABATAKE N, TANAKA Y. Observed low level jets associated with Typhoon Higos (0221) over the Kanto Plain[J]. Sola, 2009(5):105-108.
    [8] NGO T T, LETCHFORD C W. Experimental study of topographic effects on gust wind speed[J]. Journal of Wind Engineering Industrial Aerodynamics, 2009, 97(9/10):426-438.
    [9] TSE K T, LI S W, CHAN P, et al. Wind profile observations in tropical cyclone events using wind-profilers and doppler SODARs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 115:93-103.
    [10] TSE K T, LI S, FUNG J C H. A comparative study of typhoon wind profiles derived from field measurements, meso-scale numerical simulations, and wind tunnel physical modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 131:46-58.
    [11] HE Y, CHAN P, LI Q. Observations of vertical wind profiles of tropical cyclones at coastal areas[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152:1-14.
    [12] SONG L, CHEN W, WANG B, et al. Characteristics of wind profiles in the landfalling typhoon boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 149:77-88.
    [13] HE J, HON K, LI Q, et al. Wind profile analysis for selected tropical cyclones over the South China Sea based on dropsonde measurements[J]. Atmsfera, 2022, 35(1):111-126.
    [14] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社, 2012.
    [15] 中国国家标准化管理委员会.台风涡旋风数据判别规范:GB/T 36745-2018[S].北京:中国标准出版社,2019.
    [16] HOLTHUIJSEN L H, POWELL M D, PIETRZAK J D. Wind and waves in extreme hurricanes[J/OL]. Journal of Geophysical Research:Oceans, 2012, 117(C9).[2012-09-01] https://doi.org/10.1029/2012JC007983.
    [17] OWINOH A Z, HUNT J C, ORR A, et al. Effects of changing surface heat flux on atmospheric boundary-layer flow over flat terrain[J]. Boundary-Layer Meteorology, 2005, 116(2):331-361.
    [18] MAHRT L, VICKERS D, SUN J L, et al. Determination of the surface drag coefficient[J]. Boundary-Layer Meteorology, 2001, 99(2):249-276.
    [19] ZHU P, FURST J. On the parameterization of surface momentum transport via drag coefficient in low-wind conditions[J]. Geophys Res Lett, 2013, 40(11):2824-2828.
    [20] KEPERT J. The dynamics of boundary layer jets within the tropical cyclone core. Part I:Linear theory[J]. Journal of the Atmospheric Sciences, 2001, 58(17):2469-2484.
    [21] KEPERT J, WANG Y. The dynamics of boundary layer jets within the tropical cyclone core. Part II:Nonlinear enhancement[J]. Journal of the Atmospheric Sciences, 2001, 58(17):2485-2501.
    [22] MASHIKO W. Formation mechanism of a low-level jet during the passage of Typhoon Ma-on (2004) over the southern Kanto district[J]. Journal of the Meteorological Society of Japan Ser II, 2008, 86(1):183-202.
    [23] CARRIER G, HAMMOND A, GEORGE O. A model of the mature hurricane[J]. Journal of Fluid Mechanics, 1971, 47(1):145-170.
    [24] SNAIKI R, WU T. A linear height-resolving wind field model for tropical cyclone boundary layer[J]. Journal of Wind Engineering Industrial Aerodynamics, 2017, 171:248-260.
    [25] FRANKLIN J L, BLACK M L, VALDE K. Eyewall wind profiles in hurricanes determined by GPS dropwindsondes; proceedings of the Preprints[C]//24th Conf on Hurricanes and Tropical Meteorology. Fort Lauderdale:the Units States of America, 2000.
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 网络出版日期:  2024-04-23

目录

    /

    返回文章
    返回