Research on Deformation Laws of Deep Excavation Based on Parameters of Silt in Reclaimed Areas
-
摘要: 目前,填海造地方法仍欠完善,由于工程人员对填海区淤泥性质认识不足,相关设计参数不够准确,在建设过程中极易出现问题。为此,首先对填海区域的基坑进行有限元建模,并模拟基坑开挖过程;然后运用反向传播神经网络(BPNN)模型建立土层参数与变形值间的非线性函数关系,得到不同时间段10个参数水平下4个淤泥层参数,并进行动态的反演分析。最后使用遗传算法(GA)对BPNN预测模型进行优化。结果表明:预测模型隐含层的结构和结点数量与其学习能力直接相关。为此,利用最小二乘法对相关数据进行拟合计算,得到隐含层结构的最优组合,进一步得到基于淤泥层参数的基坑变形预测模型。利用动态参数模拟算法对基坑4个深度的工况进行预测,得到累计绝对误差为20.46 mm,平均预测精度为98.48%,表明根据反分析得到的参数能够对基坑变形规律进行准确预测。Abstract: The current method of land reclamation is still incomplete. Due to the insufficient understanding of the nature of the silt in the reclamation area by engineering personnel, the design parameters are not accurate enough, making it very easy for problems to occur during the construction process. Therefore, the study first modeled the foundation excavation in the reclamation area and simulated the finite element calculation of the excavation of the foundation excavation. Then the back propagation neural network (BPNN) model was used to establish the nonlinear functional relations between coating parameters and deformation values. Through dynamic back analysis, the BPNN model was used for dynamic back analysis. By utilizing the nonlinear relations between the mechanical parameters in the soil layer and the deformation value of the foundation excavation, four sets of silt layer parameters at different time periods were obtained. The BPNN prediction model was optimized by using Genetic Algorithm (GA). During the research process, it was found that the structure and number of nodes contained in the hidden layer of the prediction model were directly related to their learning ability. For this purpose, the study used the least squares method to fit and calculate the relevant data, and obtained the optimal combination of hidden layer structures. From this, a deformation prediction model for underground foundation excavation based on silt layer parameters was obtained. Through experiments, the total absolute error of the model was 20.46 mm, and the average prediction accuracy was 98.48%. The deformation patterns of foundation excavation could be accurately predicted based on the parameters obtained from back analysis.
-
[1] 张生杰,谭勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设,2022(1):113- 120. [2] 刘超,邹玉强,赵志达,等. 深基坑设计参数反演分析与变形预测系统应用[J]. 施工技术,2020,49(13):56- 60. [3] 赵一行,詹刚毅,石钰锋,等. 某超深圆形基坑受力变形的尺寸效应分析[J]. 华东交通大学学报,2021,38(5):23- 29. [4] 计鹏,李栋梁,左战旗,等. 基于反演分析的地面超载对深基坑变形影响研究[J]. 铁道建筑技术,2021(9):24- 28. [5] 张炜煜. 东沙站基坑地连墙变形及m值反演分析[J]. 建材与装饰,2021(32):57- 58. [6] 高德风,周傲,冯亚腾,等. 太湖明挖隧道围护结构变形监测与参数智能反演[J]. 土工基础,2020,34(3):385- 390. [7] 倪小东,王琛,唐栋华,等. 软土地区深基坑超大变形预警及诱因分析[J]. 中南大学学报(自然科学版),2022(6):2245- 2254. [8] 苟胜荣,付江涛. 基于趋势性分析模型的地铁基坑变形预测研究[J]. 地理空间信息,2020(1):115- 118. [9] 万荣辉,柯龙. 基于粗集理论算法-脊波神经网络的深基坑变形预测与应用[J]. 安全与环境学报,2020,20(1):47- 51. [10] 王飞. 基于局部均值分解和PSO-RVM-ARIMA模型的基坑变形预测研究[J]. 河南科学,2021(10):1649- 1654. [11] 闫旭. 土建施工中深基坑支护施工技术的运用探究[J]. 商品与质量·建筑与发展,2020(8):82- 83. [12] 范红伟. 探讨高层建筑工程深基坑支护施工技术[J]. 建材发展导向,2023(4):178- 180. [13] 连保康,马凯伦. 空间受限条件下多风险源的深基坑施工案例研究[J]. 现代隧道技术,2022,59(增刊1):1095- 1101. [14] 吴刚,赵晨玲,张晓静. 软土地区临近地铁基坑支护工程案例分析与总结[J]. 中国水运,2017,17(8):335- 336. [15] 符师. 关于深挖填土基坑监测及安全性的思考[J]. 测绘与勘探,2022,4(3):54- 56. [16] ZHANG Q W. Deformation analysis of deep foundation pit excavation in China under time-space effect[J]. Geotechnical Research,2020,7(3):146- 152. [17] 方少华. 土建施工中深基坑支护施工技术的运用探究[J]. 工程技术(文摘版)·建筑,2020(1):112- 113. [18] 李新民. 分析高层建筑工程深基坑支护施工技术[J]. 智能城市,2017,3(9):166- 166. [19] 纪国勇. 深基坑支护技术在房屋建筑施工中的应用[J]. 建材与装饰,2020(20):1- 2. [20] 王凡,樊凡,刘超飞,等. 临河富水砂层深基坑降水方案及对周边环境影响分析[J]. 建筑技术开发,2022,49(5):161- 164. -
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 9
- PDF下载量: 1
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: