Research on Urban Building Safety Monitoring Techniques Based on InSAR
-
摘要: 城市建筑安全涉及人民的生命财产,近年已有多起建筑局部坍塌造成严重损害。为实现"灾前预防"的现代化城市建筑设施安全监管,基于PS-InSAR技术,提出一种针对于城市建筑及基础设施的大范围安全风险评估方法。通过结合InSAR原理,提取建筑PS点聚类,分析聚类点形变信息,根据建筑物风险相关指标提取有效形变,参考建筑类型及区域情况划分风险等级标准,进而评价区域内建筑设施的安全风险情况。以长春市为例,利用COSMO-SkyMed卫星时序数据,对主城区建筑物进行大范围安全风险监测试验,并对评价为D级需重点关注的建筑进行实地踏勘,发现均存在较为明显的隐患情况。证实了方法的可行性以及准确性,能够为大范围城市建筑设施定期"体检"提供技术支持,保障城市建筑安全。
-
关键词:
- 城市建筑安全 /
- PS-InSAR技术 /
- 安全风险监测 /
- 长春市
Abstract: The safety of urban buildings involves people’s lives and property. In recent years, there have been many local collapses of buildings causing serious damage. In order to realize the "pre-disaster prevention" safety supervision of modern urban building facilities, a large-scale safety risk assessment method for urban buildings and infrastructure was proposed based on PS-InSAR technology. By combining InSAR principle, the building PS point clustering was extracted, the deformation information of cluster points was analyzed, the effective deformation was extracted according to building risk related indicators, and risk grade standards were divided according to building types and regional conditions, so as to evaluate the safety risk situation of building facilities in the region. Taking Changchun City as an example, using the COSMO-SkyMed satellite time series data, a large-scale safety risk monitoring experiment was conducted on buildings in the main urban area, and a field survey was conducted on buildings that were evaluated as grade D and needed to be paid attention to, and it was found that there were obvious hidden dangers. The feasibility and accuracy of the method were confirmed, and it could provide technical supports for regular "physical examination" of large-scale urban building facilities and ensure the safety of urban buildings. -
[1] 杨顺武,伍冠玲.我国房屋安全管理的现状与对策[J].建筑安全,2007(11):20-22. [2] 孙健.简谈房屋安全管理工作[J].大众标准化,2022(6):36-38. [3] 陈浩东.试论搞好危旧房屋安全质量工程:大检查重要性和迫切性的认识[J].现代营销(学苑版),2011(12):227. [4] 张琳.建筑坍塌事故时空分析及引致因素研究[D].扬州:扬州大学,2023. [5] 周瑞.农村房屋倒塌风险识别、评估及防范研究[D].重庆:重庆大学,2022. [6] 梁远曦.谈房屋安全管理与房屋安全鉴定[J].低碳世界,2021,11(1):237-238. [7] 闻绍毅,李洋.地质灾害防灾减灾技术研究现状及发展综述[J].地质与资源,2014,3(23):296-300. [8] 沈体雁,肖雪.推进国家城市治理基础设施建设[J].中国信息界,2021(6):45-48. [9] 卢谦,林爱莲.建筑物全寿命周期管理整体系统分析[J].科技进步与对策,2008(10):36-38. [10] 国务院安委会办公室、国家减灾委办公室、应急管理部.关于加强应急基础信息管理的通知[ED/OL]. https://www.mem.gov.cn/gk/zfxxgkpt/fdzdgknr/202012/t20201207_374084.shtml [11] 刘俊英,庞存亮.大数据技术在建筑安全智能监控管理中的应用[J].集成电路应用,2023,40(5):366-367. [12] GABRIEL A K, ZEBKER H A, GOLDSTEIN R M. Differential radar interferometry[J]. Journal of Geophysical Research, 1989, 94(B7):9183-9191. [13] HOOPER A, ZEBKER H, SEGALL P, KAMPES B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J/OL]. Geophysical Research Letters, 2004, 31(23).[2023-12-08]. https://doi.org/10.1029/2004GL021737 [14] 廖明生,王腾.时间序列InSAR技术与应用[M].北京:科学出版社,2014. [15] AGRAM P. Persistent scatterer interferometry in natural terrain[D]. USA:Stanford University, 2010. [16] MA P F, LIN H, LAN H X, et al. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:118-128. [17] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733. [18] 徐源懋.基于InSAR与机器学习的兰州市地面沉降监测与建筑物风险隐患评估[D].兰州:中国地震局兰州地震研究所,2023. [19] 朱茂,沈体雁,黄松,等.基于COSMO-SkyMed数据的水库边坡InSAR形变监测应用[J].水力发电学报,2018,37(12):11-21. [20] DAI K, LIU G, LI Z, et al. Monitoring highway stability in permafrost regions with X-band temporary scatterers stacking InSAR[J/OL]. Sensors, 2018.[2023-12-08].https://doi.org/10.3390/s18061876. [21] MA P, LIN H. Robust Detection of single and double persistent scatterers in urban built environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2124-2139. [22] MA P, LI T, FANG C, et al. A tentative test for measuring the sub-millimeter settlement and uplift of a high-speed railway bridge using COSMO-SkyMed images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155:1-12. [23] MA P, WANG W, ZHANG B, et al. Remotely sensing large-and small-scale ground subsidence:a case study of the Guangdong-Hong Kong-Macao Greater Bay Area of China[J]. Remote Sensing of Environment, 2019, 232:111282. [24] 董龙凯.大陆尺度InSAR地表形变监测方法研究[D].北京:中国科学院大学(中国科学院空天信息创新研究院),2022. [25] ZHU M, WAN X, FEI B, et al. Detection of building and infrastructure instabilities by automatic spatiotemporal analysis of satellite SAR interferometry measurements[J/OL]. Remote Sensing,2018.[2023-12-08].https://doi.org/10.3390/rs10111816 [26] LIU Y, CAO W, SHI Z, et al. Evaluation of post-tunneling aging buildings using the InSAR nonuniform settlement index[J/OL]. Remote Sensing,2023, 15(14).[2023-12-08]. https://doi.org/10.3390/rs15143467. [27] LUO X, WANG C, SHEN P. Polarimetric stationarity omnibus test (PSOT) for selecting persistent scatterer candidates with quad-polarimetric SAR datasets[J/OL].Sensors, 2020,20(6).[2023-12-08]. https://doi.org/10.3390/s20061555. [28] LI D R, LIAO M S, WANG Y, et al.Validation of the result from permanent scatterer INSAR in Shanghai[C]//Proceedings of the 2005 Dragon Symposium (SP-611). Santorini, Greece:2005. [29] 林珲,陈富龙,江利明,等.多基线差分雷达干涉测量的大型人工线状地物形变监测[J].地球信息科学学报,2010,12(5):718-725. [30] COSTANTINI M, CHEN T, XU Y, et al. High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry:Accuracy analysis and validation[C]//Proceedings of Fringe 2011. Frascati, Italy:2011. [31] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J].测绘学报,2017,46(10):1717-1733. [32] 方杰. InSAR在城市地表和建筑坍塌形变监测中的应用[D].合肥:安徽建筑大学,2023. [33] 朱茂,沈体雁,黄松,等.InSAR技术地铁沿线建筑物形变监测[J].国土资源遥感,2019,31(2):196-203. [34] 中华人民共和国住房和城乡建设部.危险房屋鉴定标准:JCJ 125-2016[S].北京:中国建筑工业出版社,2016. [35] 中国工程建设标准化协会.建筑安全星载干涉雷达监测技术规程:T/CECS 1165-2022[S].北京:中国计划出版社,2022. [36] 段文锋,李科,方娥.居民自建房安全检测鉴定成果评定优化研究[J].城市建设理论研究(电子版),2023(26):109-111.
点击查看大图
计量
- 文章访问数: 181
- HTML全文浏览量: 18
- PDF下载量: 8
- 被引次数: 0