Experimental Research on Size Effects of Brick Masonry Columns Reinforced with and Without External Angle Steel Under Axial Compression
-
摘要: 为研究砖砌体柱及外包角钢加固砖砌体柱的尺寸影响,完成了12根不同尺寸方形截面未加固及加固砖砌体柱的轴心受压试验,分析了试件的破坏特征、荷载-位移曲线、横截面平均应力-位移曲线、轴心抗压强度和承载力、名义峰值应变等。研究结果表明:在保持试件高厚比为3的前提下,增大未加固砖砌体柱的截面尺寸对轴心抗压强度几乎没有影响,但名义峰值应变随截面面积增大呈先上升后下降的趋势;外包角钢加固能够大幅提高砖砌体柱的轴心抗压承载力和变形能力,但截面尺寸对加固效果存在影响;在高厚比相同、截面含钢率与体积配箍率基本一致的情况下,名义峰值应变随砖砌体柱截面面积增大呈下降趋势,外包角钢对小尺寸砖砌体柱试件加固效果更好。最后,提出了外包角钢加固砖砌体柱的轴心受压承载力计算方法。Abstract: For investigating the size effects of brick masonry columns and reinforced brick masonry columns with angle steel, axial compression tests were conducted on 12 square cross-section unreinforced and reinforced brick masonry columns with different sizes. The failure characteristics, load-displacement curves, curves of average stress of cross-section versus displacement, axial compressive strength and bearing capacity, nominal peak strain, and other characteristics of the specimens were analyzed. The results showed that, the cross-sectional area of the unreinforced brick masonry column had little effect on the axial compressive strength at height-thickness ratio of 3, but the nominal peak strain increased and then decreased with the increase of the cross-sectional area. The outer angle steel reinforcement could greatly improve the axial compressive load-bearing and deformation capacity of the brick masonry column, but the cross-sectional size had an impact on the reinforcement effect. The reinforcement effect of angle steel on small-sized specimens was better at the same height-thickness ratio, steel content of sections, and volume-reinforcement ratio. The nominal peak strain of the reinforced masonry columns decreased with the increase of cross-sectional area. Finally, the method of calculating the bearing capacity of brick masonry columns reinforced with angle steel was proposed.
-
[1] SINGHAL V, RAI D C. Suitability of half-scale burnt clay bricks for shake table tests on masonry walls[J]. ASCE Journal of Materials in Civil Engineering, 2014, 26(4):644-657. [2] 侯汝欣. 砖砌体截面尺寸影响系数和泊松系数的研究[J]. 四川建筑科学研究, 1983 (1):20-23. [3] 陈晓峰. 空间钢构架混凝土柱受力性能试验研究[D]. 苏州: 苏州科技学院, 2015. [4] MASIA M J, GALE T N, SHRIVE N G. Size effects in axially loaded square-section concrete prisms strengthened using carbon fibre reinforced polymer wrapping[J]. Canadian Journal of Civil Engineering, 2004, 31(1):1-13. [5] 中华人民共和国住房和城乡建设部.砌体基本力学性能试验方法标准:GB/T 50129—2011[S]. 北京: 中国建筑工业出版社, 2011. [6] 卓尚木,林茂合,陈丽梅.砖柱外包钢加固的强度和变形[J].建筑结构,1994(5):12-17. [7] 中国国家标准化管理委员会.砌墙砖试验方法:GB/T 2542—2012[S]. 北京: 中国标准出版社, 2012. [8] 中华人民共和国建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70—2009[S]. 北京:中国建筑工业出版社, 2009. [9] 中国国家标准化管理委员会. 钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975—2018[S]. 北京: 中国质检出版社, 2018. [10] 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [11] 施楚贤. 砌体结构理论和设计[M]. 北京: 中国建筑工业出版社, 2003: 1-93. [12] 中华人民共和国住房和城乡建设部.砌体结构加固设计规范:GB/T 50702—2011[S]. 北京: 中国建筑工业出版社, 2011. [13] 欧阳煜, 刘能科. 外包钢加固轴心受压砖柱的受力性能分析[J]. 建筑结构, 2006, 36(11):27-29. [14] SARHAT S, SHERWOOD E G. Shear strength of GFRP-reinforced concrete masonry beams[C]//ASTM Symposium on Masonry 2018: Innovations in Collaborative Research, Development, and Applications. San Diego, CA: 2018:131-157. [15] 陈玉立. 钢板-既有砖砌体组合短柱轴心受压性能试验与理论研究[D]. 南京: 东南大学, 2012. [16] MANDER J, PRIESTLEY M. Theoretical stress-strain model for confined concrete[J]. ASCE Journal of Structural Engineering, 1988, 114(8):1804-1826. [17] 侯汝欣. 砖砌体泊松系数μ值的初步试验研究[J]. 建筑结构, 1982(6):25-28. [18] 刘桂秋. 砌体结构基本受力性能的研究[D]. 长沙: 湖南大学, 2005:6-7. [19] 卢亦焱,黄悦,刘真真,等.角钢-玻璃纤维布复合加固砖柱轴压性能研究[J].应用基础与工程科学学报,2022,30(3):645-656.
点击查看大图
计量
- 文章访问数: 9
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0