Research on Process-Based Carbon Emissions of Floor Construction of Prefabricated Steel Structures
-
摘要: 基于装配式钢结构工程施工过程特点,提出基于工序的施工碳排放计算方法,以某多层钢结构数据中心项目为例验证方法的可行性,获得钢结构楼板楼承板、剪力钉、钢筋和混凝土工程共10项工序施工碳排放基础参数。以单位平方米楼板面积碳排放为计量单位,所得钢结构楼板施工总碳排放为0.759 5 kgCO2/m2,该值相当于楼板建材隐含碳排放的1.64%。碳排放贡献由大到小依次为混凝土工程(0.477 8 kgCO2/m2)、钢筋工程(0.181 5 kgCO2/m2)、剪力钉工程(0.067 1 kgCO2/m2)、楼承板工程(0.033 1 kgCO2/m2)。施工过程能源/物料消耗产生碳排放分别占比72.6%、27.4%,产生的直接、间接、隐含碳排放分别占比62.9%、9.7%和27.4%。基于研究提出的计算方法,所得结果可呈现主要碳排放源,有助于追溯钢结构工程施工碳排放热点并制定减排措施。对于文中案例,单项碳排放占比超过5%的施工工序有混凝土预拌、钢筋绑扎、混凝土泵送和剪力钉焊接,这4项共产生了楼板施工总碳排放的88.9%。Abstract: Based on the characteristics of the construction process of prefabricated steel structures, a process-based construction carbon emission calculation method was proposed, and the feasibility of the method was verified in a case study of a multi-story steel-structured data center project. Through on-site measurement and investigation, the basic parameters of construction process-specific carbon emissions in 10 processes of floor deck, shear nails, steel rebars and concrete works were obtained. The calculation results were uniformly characterized as carbon emissions per square meter of floor area, and it showed that the total carbon emissions of steel structure floor construction were 0.759 5 kgCO2/m2 floor area, which was equivalent to 1.64% of the building material embodied carbon emissions of the floor construction. The carbon emission contribution was concrete works (0.477 8 kgCO2/m2 floor area), steel rebar works (0.181 5 kgCO2/m2 floor area), shear nail works (0.067 1 kgCO2/m2 floor area), and floor deck works (0.033 1 kgCO2/m2 floor area) in descending order. Among them, the carbon emissions by construction energy and material consumption accounted for 72.6% and 27.4%, respectively, and the generated direct, indirect, and embodied carbon emissions accounted for 62.9%, 9.7% and 27.4%, respectively. Based on the calculation method proposed by this study, the results obtained could show the main carbon emission sources, which was conducive to tracing the carbon emission hotspots of steel structure construction and formulating corresponding carbon reduction measures. In this case, the construction processes that generated carbon emissions more than 5% of total were the concrete mixing process, steel rebar lashing process, concrete pumping process, and shear nail welding process, which together generated 88.9% of the total carbon emissions of floor construction.
-
Key words:
- steel structures /
- prefabricated /
- floor /
- construction /
- process /
- carbon emissions
-
[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告[M]. 北京: 中国建筑工业出版社, 2022. [2] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. [2021-10-24]. http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm. [3] 中华人民共和国住房和城乡建设部. 中共中央宣传部举行新时代住房和城乡建设事业高质量发展举措和成效新闻发布会[EB/OL]. [2022-09-15]. https://www.mohurd.gov.cn/xinwen/jsyw/202209/20220915_768000.html. [4] 岳清瑞. 钢结构与可持续发展[J]. 建筑, 2021(13): 20-21, 23. [5] 北京中建协认证中心有限公司, 北京建工建筑产业化投资建设发展有限公司. 中国建筑行业装配式建筑发展研究报告[R]. 2022. [6] C MAO, Q SHEN, and L SHEN, et al.Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects [J], Energy and Buildings 66, 165176(2013). [7] Y H DONG, and S T NG, A life cycle assessment model for evaluating the environmental impacts of building construction in Hong Kong [J], Building and Environment 89, 183191(2015). [8] 彭渤. 绿色建筑全生命周期能耗及二氧化碳排放案例研究[D]. 北京: 清华大学, 2012. [9] X SU, and X ZHANG, A detailed analysis of the embodied energy and carbon emissions of steel-construction residential buildings in China [J], Energy and Buildings 119, 323330(2016). [10] H LI, Z LUO, and X XU, et al.Assessing the embodied carbon reduction potential of straw bale rural houses by hybrid life cycle assessment: A four-case study [J], Journal of Cleaner Production 303, 127002(2021). [11] A T BALASBANEH, and M Z RAMLI, A comparative life cycle assessment (LCA) of concrete and steel-prefabricated prefinished volumetric construction structures in Malaysia [J], Environmental Science and Pollution Research 27, 344318643201(2020). [12] P VITALE, A SPAGNUOLO, and C LUBRITTO, et al.Environmental performances of residential buildings with a structure in cold formed steel or reinforced concrete [J], Journal of Cleaner Production 189, 839852(2018). [13] A M MONCASTER, F POMPONI, and K E SYMONS, et al.Why method matters: Temporal, spatial and physical variations in LCA and their impact on choice of structural system [J], Energy and Buildings 173, 389398(2018). [14] SCHEUER C, KEOLEIAN G A, REPPE P. Life cycle energy and environmental performance of a new university building: modeling challenges and design implications [J]. Energy and Building, 2003, 35, 1049-1064. [15] Z S M NADOUSHANI, and A AKBARNEZHAD, Effects of structural system on the life cycle carbon footprint of buildings [J], Energy and Buildings 102, 337346(2015). [16] COLE R J. Energy and greenhouse gas emissions associated with the construction of alternative structural systems [J]. Building and Environment, 1999, 34: 335-348. [17] A A GUGGEMOS, and A HORVATH, Comparison of environmental effects of steel- and concrete-framed buildings [J], Journal of Infrastructure Systems 11, 293101(2005). [18] 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准: GB/T 51366—2019[S]. 北京: 中国建筑工业出版社, 2019. [19] 陈华周, 张相勇, 李任戈, 等. 钢结构建筑装配式产品制作阶段碳排放研究[C]//2022年工业建筑学术交流会论文集(下册). 北京: 2022: 214-222.
点击查看大图
计量
- 文章访问数: 121
- HTML全文浏览量: 16
- PDF下载量: 7
- 被引次数: 0