Research Progress of Exterior Wallboards for Prefabricated Steel Structures
-
摘要: 装配式钢结构建筑在我国的快速发展对与其配套使用的外墙板系统的连接性能及经济指标提出了更高的要求。基于大量的国内外文献检索,对外墙板的类型、受力性能以及连接构造等方面的研究及应用进展进行了总结,分析了各类外墙板与主体结构连接节点的优缺点,总结了目前外墙板与装配式钢结构连接节点存在的主要问题。发现外墙板材料方面主要存在耐久性差、能耗大,环境效益差、综合性能低等问题,外墙板与主体结构连接节点存在设计的标准化程度低、制作的工业化及自动化程度较低、节点形式复杂,可操作性差等问题。最后,指出了目前推广应用存在的关键瓶颈,并对今后的研发方向提出了合理化建议。Abstract: With the rapid development of prefabricated steel structures in our country, a higher request has been put forward for the connection performance and economic index of exterior wallboard system. Based on a large number of literature retrieval at home and abroad, the research and application progress of exterior wallboards in the types, mechanical properties and connection structure were summarized, the advantages and disadvantages of various types of exterior wallboards and main structure connection joints were analyzed, and the main problems existing in the connection joints of exterior wallboards and fabricated steel structures were summarized.It was found that the exterior wallboards materials mainly showed poor durability, high energy consumption, poor environmental benefits, low comprehensive performance problems, the connection joints between exterior wallboards and the main structure also remained some problems,such as poor standardization in design, poor industrialization and automation in production, complex joint form, and poor operability.Finally, the key bottleneck existing in the current application was pointed out, and some reasonable suggestions for the future development direction were put foward.
-
Key words:
- prefabricated steel structure /
- exterior wallboard /
- foam ceramics /
- joint connection /
- standardiszation
-
[1] 雷宏刚. 钢结构设计基本原理[M]. 北京: 科学出版社,2006. [2] 黄丹, 王卫永. 装配式钢结构建筑体系研究及应用综述[J].建筑钢结构进展,2022,24(8):1-18. [3] 张文韬, 安朋飞. 装配式钢结构住宅外墙板发展综述[J].中国房地产业, 2018(35): 100-101. [4] 夏壮, 朱黎明, 韩乐雨, 等. 装配式钢结构建筑外墙体分类与研究现状[J]. 河南大学学报(自然科学版), 2021,51(6): 728-738. [5] 张国伟, 孙世权, 张品, 等.加气混凝土单元体外墙板抗震性能的试验研究[J].工业建筑,2019, 49 (4): 101-107. [6] 宏憲長井, 学兼松, 貴文野口. 建築外壁の材料選定最適化手法に関する研究[J]. 日本建築学会構造系論文集, 2009(640): 1005-1011. [7] YANG Y M,ZHANG Y R. Experimental research on mechanical properties of ALC wallboard[J].Advanced in Civil Engineering and Architecture Innovation, 2012,368-373: 423-427. [8] CHEN W, YE J H, BAI Y, et al. Improved fire resistant performance of load bearing cold-formed steel interior and exterior wall systems[J]. Thin-Walled Structures, 2013,73: 145-157. [9] 樊长林. 多层钢结构住宅中煤矸石轻质砼板系研发[D]. 太原: 太原理工大学, 2004. [10] 孙泉. 钢结构住宅中煤矸石轻骨料混凝土外墙板系的研究[D]. 太原: 太原理工大学, 2007. [11] 王小龙. 全装配住宅体系中煤矸石混凝土聚氨酯夹芯板的研发[D]. 太原: 太原理工大学, 2014. [12] 杨乐. 装配式钢结构住宅配套煤矸石墙板的连接构造及试验研究[D]. 太原: 太原理工大学, 2017. [13] 邸芃, 赵旭. ALC节能墙板裂缝成因及控制[J]. 施工技术, 2015(16): 64-67. [14] 严小霞, 周瑜, 孙一, 等. 钢结构装配式高层住宅ALC墙板抗裂技术研究与应用[C]//2021年工业建筑学术交流会论文集. 2021. [15] 邸超阳. 装配式钢结构住宅中蒸压加气混凝土填充墙抗裂性能研究[D]. 天津: 天津大学, 2020. [16] 崔艳玲. GRC的耐久性及其机理研究[D]. 北京: 中国建筑材料科学研究总院, 2007. [17] CHEN D, DENG J J, CHENG B Q, et al. New anticracking glass-fiber-reinforced cement material and integrated composite technology with lightweight concrete panels[J]. Advanced in Civil Engineering, 2021(22),7447066. [18] 陈伟. 装配式GRC装饰一体化围护结构的基本性能研究[D]. 南京: 东南大学, 2018,112431. [19] ARSLAN M E, AYKANAT B, SUBASI S, et al. Cyclic behavior of autoclaved aerated concrete block infill walls strengthened by basalt and glass fiber composites[J]. Engineering Structures, 2021,240,112431. [20] 杨小平, 苏素芹. 磷酸盐改性波特兰水泥提高玻纤耐碱性[J]. 山东建材, 2005(1): 16-18. [21] 刘国强. 废混凝土对GRC耐久性影响研究[D]. 北京: 北方工业大学, 2017. [22] 程海丽, 刘国强, 杨飞华, 等. 废混凝土再生骨料及掺和料对GRC耐久性的影响[J]. 建筑材料学报, 2018(3): 490-496. [23] 苗青. 装配式复合墙板抗风及抗震性能试验研究[D]. 天津: 天津大学, 2018. [24] LI C, SHEN H S, YANG J, et al. Low-velocity impact response of sandwich plates with GRC face sheets and FG auxetic 3D lattice cores[J]. Engineering Analysis With Boundary Elements, 2021,132: 335-344. [25] JIANG D B, LI X G, LYU Y, et al. Utilization of limestone powder and fly ash in blended cement: rheology, strength and hydration characteristics[J]. Construction and Building Materials, 2020,232,117228. [26] CUI H H. Structure and construction technology of new-type external thermal insulation in outer wall: advances in civil and industrial engineering, PTS 1-4[C]// 3rd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2013). 2013: 2813-2816. [27] 叶增平. 建筑工业化装配式复合外墙板的发展现状与趋势[J]. 福建建设科技, 2016(1): 28-30. [28] 王丽娜, 龙飞, 李阳, 等. 真空挤出成型工艺制备纤维水泥板的研究[J]. 混凝土世界, 2020(3): 74-77. [29] 李赟. 装配式ECP板材挤出成形关键技术研究与优化分析[D]. 贵阳: 贵州大学, 2021. [30] KIM H, PARK S, LEE S. Characteristics of an extrusion panel made by applying a modified curing method[J]. Materials, 2016,9(5):347-354. [31] TIAN J, WANG Y, JIAN Z, et al. Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system[J]. Earthquakes and Structures, 2019,16(1): 83-96. [32] TIAN J, SHI Q, LI S, et al. Experimental and numerical study of PRC coupling beams with low span-to-depth ratio[J]. Journal of Constructional Steel Research, 2019,159: 34-52. [33] SANTOS S F, SCHMIDT R, ALMEIDA A E F S, et al. Supercritical carbonation treatment on extruded fibre-cement reinforced with vegetable fibres[J]. Cement & Concrete Composites, 2015,56: 84-94. [34] DO AMARAL L M, RODRIGUES C D S, POGGIALI F S J. Hornification on vegetable fibers to improve fiber-cement composites: A critical review[J]. Journal of Building Engineering, 2022,48:385-399. [35] 刘卉. 预制混凝土夹芯保温外挂墙板研究[D]. 南京: 东南大学, 2016. [36] MA S, JIANG N. Seismic experimental study on new-type composite exterior wallboard with integrated structural function and insulation[J]. Materials, 2015,8(6): 3732-3753. [37] PARRACHA J L, BORSOI G, FLORES-COLEN I, et al. Impact of natural and artificial ageing on the properties of multilayer external wall thermal insulation systems[J]. Construction and Building Materials, 2022,317,125834. [38] KORONTHALYOVA O. Moisture storage capacity and microstructure of ceramic brick and autoclaved aerated concrete[J]. Construction and Building Materials, 2011,25(2): 879-885. [39] 苗青, 余玉洁, 陈志华. 装配式钢结构建筑墙体研究[C]//装配式钢结构建筑技术研究及应用论文集. 2017. [40] 张天一, 陈敖宜, 陈志华, 等.装配式泡沫混凝土外墙板抗风承载力试验研究[J].工业建筑,2017, 47 (9): 60-63. [41] 于泽. 装配式钢结构中防火板温度场模拟及泡沫陶瓷的应用探究[D]. 太原: 太原理工大学, 2020. [42] 王紫瑜. 装配式钢框架建筑泡沬陶瓷内隔墙试验研究及数值模拟[D]. 太原: 太原理工大学, 2020. [43] 李圆圆. 泡沫陶瓷外墙板的试验研究与标准化设计[D]. 太原: 太原理工大学, 2020. [44] 王振龙. 钢筋网架-混凝土组合夹芯墙板性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [45] LAMEIRAS R, BARROS J, VALENTE I B, et al. Development of sandwich panels combining fibre reinforced concrete layers and fibre reinforced polymer connectors. part I: conception and pull-out tests[J]. Composite Structures, 2013,105: 446-459. [46] HOPKINS P. Development of FRP plate shear connectorfor insulated concrete sandwich panels[C]//The 7th International Conference on FRP Composites in Civil Engineering: International Institute for FRP in Construction. 2015. [47] JIANG H, GUO Z, LIU J. Composite behavior of sandwich panels with W-shaped SGFRP connectors[J]. KSCE Journal of Civil Engineering, 2018(5): 1889-1899. [48] 尹相华. 基于村镇民居的新型装配式复合墙板热工性能研究[D]. 西安: 西安建筑科技大学, 2017. [49] 申亚楠. 预制夹心保温复合墙板的研制及适用性评价[D]. 徐州: 中国矿业大学, 2018. [50] YANG H Y, LI R D, LIU H Y, et al. Experimental study on thermal performance of steel mesh frame sandwich insulation board[J]. Applied Mechanics and Materials, 2012, 1931(193/194): 847-851. [51] GAO Y, CHENG B, MA P, et al. Study on the high-performance composite wall panel envelop of building and its relevant joint construction[C]//E3S Web of Conferences. 2020: 1003-1012. [52] LEE S, KIM S, NA Y. Comparative analysis of energy related performance and construction cost of the external walls in high-rise residential buildings[J]. Energy & Buildings, 2015,99: 67-74. [53] SHNERB N M, SARAH P, LAVEE H, et al. Reactive glass and vegetation patterns [J]. Physical Review Letters, 2003,90(3): 8101-8102. [54] 鲍鹏, 马少春, 韩学行, 等. 陶粒混凝土夹芯保温复合墙板性能分析[J]. 河南大学学报(自然科学版), 2017(5): 591-596. [55] HARDENBERG J V, MERON E, SHACHAK M, et al. Diversity of vegetation patterns and desertification[J]. Physical Review Letters, 2001,87(19): 8101-8110. [56] 李国强, 王城. 外接式和内嵌式ALC墙板钢框架结构的滞回性能试验研究[J]. 钢结构, 2005,20(1): 52-56. [57] 孔祥忠,孙金栋,史思阳,等.装配式 ALC 墙体节点设计优化及试验研究[J]. 施工技术,2020,49(5):119-122. [58] 赵鹤,王皓,支旭东,等. 装配式板柱钢结构体系建筑产业化技术与示范[J].建筑钢结构进展,2021,23(10):32-43. [59] 杨云, 石晓猛. 外挂墙板耗能节点的设计研究[J]. 低温建筑技术, 2013(3): 73-75. [60] POPOVIC O A. Sustainable aspects of longspan lightweight steel structures[J]. Journal of Constructional Steel Research, 1998(1): 288-289. [61] 周全. PC结构住宅工业化模板体系研究[D]. 上海: 同济大学, 2009. [62] 邱增美,李帼昌,杨志坚,等.蒸压轻质加气混凝土外墙板与钢梁连接节点的抗震性能试验研究[J].工业建筑,2017, 47 (3): 163-168. [63] 刘腾蛟, 唐晓. 墙板与钢结构连接方法总结分析[J]. 技术与市场, 2016(6): 143-144. [64] 高英博, 聂金哲, 李德英. 北京地区农村住宅墙体外保温改造效益分析[J]. 科学技术与工程, 2019, 19(27): 298-303. [65] 金晓飞, 孟永杰, 杨晓杰, 等. 装配式钢结构建筑墙板节点力学性能总结与分析[C]//第十二届全国现代结构工程学术研讨会暨第二届全国索结构技术交流会论文集. 2012. [66] WANG J, LI B. Cyclic testing of square CFST frames with ALC panel or block walls[J]. Journal of Constructional Steel Research, 2017,130: 264-279. [67] WANG B, WANG J, GONG X, et al. Experimental studies on circular CFST frames with ALC walls under cyclic loadings[J]. International Journal of Steel Structures, 2014(4): 755-768. [68] GETZ D R, MEMARI A M. Static and cyclic racking performance of autoclaved aerated concrete cladding panels[J]. Journal of Architectural Engineering, 2006(1): 12-23. [69] 刘学春, 周小俊, 张译文. 外挂整体装配式墙体及连接抗震性能研究[J]. 工业建筑, 2017,47(7): 34-39,33. [70] 张国伟, 肖伟, 陈博珊, 等. 蒸压加气混凝土外挂墙体滞回性能研究[J]. 工业建筑, 2016,46(11): 86-92. [71] 刘华, 卢清刚, 苗启松, 等. 蒸压轻质加气混凝土外墙板高效连接节点性能研究[J]. 建筑结构, 2019(18): 32-38. [72] WANG J, LI B, LI J. Experimental and analytical investigation of semi-rigid CFST frames with external SCWPs[J]. Journal of Constructional Steel Research, 2017,128: 289-304. [73] 王静峰, 叶慧君, 李金超, 等. 填充节能复合墙板钢框架结构的抗震性能[J]. 建筑钢结构进展, 2015(6): 35-43. [74] 王如伟, 曹万林, 殷飞. 复合墙嵌入深度对装配式轻钢框架-复合墙结构抗震性能的影响[J]. 建筑结构, 2021(5): 54-60. [75] 张爱林, 马林, 刘学春, 等. 装配式外挂墙板钢框架受力性能有限元分析[J]. 建筑结构学报, 2016(增刊1): 152-157. [76] 李九阳, 刘丽华. 复合墙板与钢框架柔性连接方式的抗震承载力研究[J]. 工业建筑, 2018,48(8): 176-180. [77] CASAFONT M, AMEDO A, ROURE F, et al. Experimental testing of joints for seismic design of lightweight structures. part 1. screwed joints in straps[J]. Thin-Walled Structures, 2006(2): 197-210. [78] CASAFONT M, AMEDO A, ROURE F, et al. Experimental testing of joints for seismic design of lightweight structures. part 2: bolted joints in straps[J]. Thin-Walled Structures, 2006(6): 677-691. [79] 耿悦, 王玉银, 丁井臻, 等. 外挂式轻钢龙骨墙体-钢框架连接受力性能研究[J]. 建筑结构学报, 2016(6): 141-150. [80] 祐一松岡, 啓一郎吹田, 哲山田, 等. 実大4層鉄骨造建物の震動台実験における外装材の耐震性能評価[J]. 日本建築学会構造系論文集, 2009(641): 1353-1361. [81] 谢振清, 丁维, 孙彤. 莱钢H型钢钢结构节能住宅建筑体系的开发和实践[J]. 建筑钢结构进展, 2003(B12): 68-74. [82] 北京市建筑设计研究院. 蒸压加气混凝土砌块、板材构造[M]. 北京:中国建筑标准设计研究院, 2013. [83] 潘翔. 钢结构装配住宅:墙板体系及相关技术研究[D]. 上海: 同济大学, 2006. [84] 黄胜, 董必雄, 王少重. 钢结构住宅预制外墙板连接构造[J]. 中国建筑金属结构, 2015(4): 78-79. [85] 孙鸿敏,侯兆新,尚仁杰,等. ALC岩棉保温一体化复合墙板应用研究[J].工业建筑,2023, 53(增刊1): 661-668. [86] SAID H M, CHALASANI T, LOGAN S. Exterior prefabricated panelized walls platform optimization[J]. Automation in Construction, 2017(1): 1-13. [87] HONG W K, JEONG S Y, PARK S C, et al. Experimental investigation of an energy-efficient hybrid composite beam during the construction phase[J]. Energy and Buildings, 2012(1): 37-47.
点击查看大图
计量
- 文章访问数: 30
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0