Finite Element Analysis of Bending Performance of Steel-Bamboo Composite Double-Chamber Box Beams
-
摘要: 钢-竹组合双室箱形梁是由冷弯薄壁型钢与重组竹通过结构胶黏结而成的一种组合梁,两者材料共同受力、协调变形,具有优异的受弯性能。在试验研究基础上,通过ABAQUS软件进行三维建模与有限元分析,并以内聚力模型模拟材料接触面的相互作用,将模拟结果与试验结果进行对比以验证模型可靠性,并对组合梁受弯性能进行参数分析。结果表明,有限元模拟结果与试验结果失效特征相似,跨中最大挠度变化规律相近,容许挠度与试验极限荷载下挠度平均误差小于5%;增加组合梁翼缘厚度、翼缘宽度、腹板高度以及型钢厚度可以有效提升抗弯刚度及受弯承载能力;此外,在一定范围内增加腹板高度,组合梁材料利用效率更高,即每增加1 kg使用量,容许荷载和极限荷载将分别提升6.20 kN和9.34 kN。
-
关键词:
- 钢-竹组合双室箱形梁 /
- 受弯性能 /
- 内聚力模型 /
- 有限元分析 /
- 参数分析
Abstract: The steel-bamboo composite double-chamber box beam is a composite beam made of cold-formed thin-walled steel and restructured bamboo bonded through structural adhesive. The two materials jointly bear stress and coordinate deformation, and have excellent bending properties. Based on the experimental research, ABAQUS software was used to conduct three-dimensional modeling and finite element analysis, and the cohesion model was used to simulate the interaction of the material contact surface. The simulation results were compared with the test results to verify the reliability of the model, and the bending performance of the composite beam was analyzed. The results showed that the failure characteristics of the finite element simulation results were similar to the test results, the change pattern of the maximum deflection in the mid-span was similar, and the average error between the allowable deflection and the deflection under the test limit load was less than 5%; increase the flange thickness, flange width, web height, and the thickness of section steel of the composite beam could effectively improve the bending stiffness and bending load-bearing capacity; in addition, by increasing the web height within a certain range, the composite beam material utilization was higher, that is, for every 1 kg increased in usage, the allowable load and ultimate load would increase by 6.20 kN and 9.34 kN, respectively. -
[1] ZHANG X, XU J, ZHANG X, et al. Life cycle carbon emission reduction potential of a new steel-bamboo composite frame structure for residential houses[J]. Journal of Building Engineering, 2021, 39, 102295. [2] 冷予冰, 许清风, 陈玲珠. 工程竹在建筑结构中的应用研究进展[J]. 建筑结构, 2018, 48(10):89-97. [3] 肖岩, 李佳. 现代竹结构的研究现状和展望[J]. 工业建筑, 2015, 45(4):1-6. [4] 单炜, 李玉顺, 蒋天元. 钢-竹组合结构体系设计方法[J]. 建筑科学与工程学报, 2012, 29(1):15-20. [5] 吕瑶, 杨尚杰, 肖毅强. 竹材人造板在建筑应用中的绿色价值潜力研究[J]. 建筑科学, 2021, 37(8):199-210. [6] WEI Y, YAN S, ZHAO K, et al. Experimental and theoretical investigation of steel-reinforced bamboo scrimber beams[J]. Engineering Structures, 2020, 223, 111179. [7] 李玉顺, 沈煌莹, 张王丽, 等. 压型钢板-竹胶板组合墙体抗震性能试验研究[J]. 工程力学, 2010, 27(增刊1):108-112, 126. [8] LI Y, SHEN H, SHAN W, et al. Flexural behavior of lightweight bamboo-steel composite slabs[J]. Thin-Walled Structures, 2012, 53:83-90. [9] 张家亮, 茅鸣, 俞斌武, 等. 钢-竹组合工字形柱轴压性能试验研究[J]. 建筑结构学报, 2022, 43(2):105-115. [10] LI Y, SHAN W, SHEN H, et al. Bending resistance of I-section bamboo-steel composite beams utilizing adhesive bonding[J]. Thin-Walled Structures, 2015, 89:17-24. [11] 张家亮, 童科挺, 何佳伟, 等. 钢-竹组合结构梁柱耗能节点抗震性能试验研究[J]. 建筑结构学报, 2022, 43(12):255-266. [12] 刘德贵, 王宇豪, 温勇, 等. 内置薄壁H形钢-木组合梁受弯性能研究[J]. 建筑结构学报, 2022, 43(5):149-163. [13] 雷云. 钢-木组合箱形梁弯曲性能研究[D]. 长沙:中南林业科技大学, 2022. [14] 娄章迪, 童科挺, 吕博, 等. 钢-竹组合箱形梁抗剪性能有限元分析[J]. 森林工程, 2023, 39(4):170-179. [15] 李卓霖. 钢-竹箱组合梁受弯性能分析[D]. 北京: 北京林业大学, 2016. [16] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104. [17] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Applied Mechanics, 1987(54):525-531. [18] 许达, 李玉顺, 张振文, 等. 内聚力模型在钢-竹组合梁变形分析中的应用[J]. 林产工业, 2018, 45(8):42-47. [19] 吴俊俊, 王占良, 童科挺, 等. 基于有限元模拟的钢-竹组合梁柱节点胶层力学性能研究[J]. 宁波大学学报(理工版), 2022, 35(3):38-44. [20] 包茜虹. 重组竹的应力-应变关系与强度准则[D]. 南京: 南京林业大学, 2016.
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 7
- PDF下载量: 6
- 被引次数: 0