Experimental Research on Hysteretic Behavior of High-Strength Steel CHS T-Joints Under Axial Loads
-
摘要: 为研究高强钢T形圆钢管相贯节点的轴向滞回性能,对5个不同支管与主管截面外径比的高强钢T形圆管节点进行了支管轴向往复加载试验研究及有限元分析。从节点的破坏模式、滞回曲线、骨架曲线、耗能和延性等方面展开了分析,重点考察了节点几何参数的影响。试验结果表明:在支管轴向往复荷载的作用下,节点破坏模式为支主管相贯线处冠部附近主管壁开裂且裂缝沿主管横截面扩展,这与普通强度钢材T形圆管相贯节点的破坏模式有所不相同;各节点的滞回曲线均呈饱满的梭形,表明高强钢T形圆管相贯节点具有良好的抗震性能。分析研究表明:主管截面尺寸相同的试件的滞回曲线外形接近,主管截面尺寸是影响这类节点滞回性能的主要因素之一;有限元建模计算得到的节点破坏模式、滞回曲线和骨架曲线均与试验结果吻合良好,所建立的有限元模型能较好地模拟高强钢T形圆管相贯节点轴向滞回性能。Abstract: In order to study the hysteretic behavior of high strength steel circular hollow section (CHS) T-joints under axial loads, five high-strength steel CHS T-joints under brace axial reciprocating loads with different outer diameter ratios of brace to chord were investigated experimentally and numerically. The hysteretic curves, skeleton curves, energy consumption, ductility and failure modes were analyzed, focusing on the effects of geometric parameters. The results showed that the failure mode of the joints under brace axial reciprocating loads was that the chord wall cracked near the crown area at the intersection line of braces and chords before the cracks expanded along the main pipe cross section, which was different from that of joints made of ordinary strength steel. The hysteretic curve of each joint was full shuttle shape which reflected good seismic performance for the high-strength steel CHS T-joints. The research also showed that the specimens with the same chord section expressed similar shape of the hysteretic curve, and the chord section was one of the main factors affecting the hysteretic behavior of this type of joints. The failure modes, hysteretic curves and skeleton curves of the joints calculated by finite element analysis were in good agreement with the test results, the finite element models established in the paper could well simulate the axial hysteretic behavior of high-strength steel CHS T-joints.
-
[1] 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1): 1-13. [2] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018. [3] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011—2010[S].北京: 中国建筑工业出版社, 2016. [4] LAN X Y, CHAN T M, BEN Y. Structural behaviour and design of high strength steel CHS T-joints[J/OL]. Thin-Walled Structures, 2020,159. [2021-02-10] https://doi.org/10.1016/j.tws.2020.107215. [5] LAN X Y, CHAN T M, BEN Y. Testing, finite element analysis and design of high strength steel RHS T-joints[J/OL]. Engineering Structures, 2021, 227. [2021-01-15]https://doi.org/10.1016/j.engstruct.2020.111184. [6] PANDEY M, YOUNG B. Tests of cold-formed high strength steel tubular T-joints[J/OL]. Thin-Walled Structures, 2019, 143.[2019-10-14]https://doi.org/10.1016/j.tws.2019.106200. [7] PANDEY M, CHUNG K F, YOUNG B. Design of cold-formed high strength steel tubular T-joints under compression loads[J/OL]. Thin-Walled Structures, 2021, 164. [2021-07-13] https://doi.org/10.1016/j.tws.2021.107573. [8] HU Y F, CHUNG K F, HAO J, et al. Structural behaviour of T-joints between high strength S690 steel cold-formed circular hollow sections[J/OL]. Journal of Constructional Steel Research, 2021, 182. [2021-07-10] https://doi.org/10.1016/j.jcsr.2021.106686. [9] 程睿, 陈阳, 崔佳, 等. 支管在轴向荷载作用下Q460C高强钢T型圆管节点疲劳性能试验研究[J]. 土木工程学报, 2017, 50(4): 57-63. [10] 常鸿飞, 夏军武, 罗梓, 等. 覆板加强的方钢管T形节点轴向滞回性能试验研究[J].建筑结构学报, 2017, 38(5): 20-26. [11] XIA J W, CHANG H F, GOLDSWORTHY H L, et al. Axial hysteretic behavior of doubler-plate reinforced square hollow section tubular T-joints[J]. Marine Structures, 2017, 55: 162-181. [12] YONG-BO S, TAO L, TJHEN L S, et al. Hysteretic behaviour of square tubular T-joints with chord reinforcement under axial cyclic loading[J]. Journal of Constructional Steel Research, 2011, 67(1):140-149. [13] GAO F, GUAN X Q, ZHU H P, et al. Hysteretic behaviour of tubular T-joints reinforced with doubler plates after fire exposure[J]. Thin-Walled Structures, 2015, 92: 10-20. [14] 赵必大, 黄禛哲, 李福龙. 十字形与 T 形圆钢管节点平面内受弯抗震性能对比[J]. 工程力学, 2023, 40(7): 158-170. [15] 赵必大, 蔡扬政, 王伟. 支主管夹角对X形圆钢管节点平面外受弯性能影[J]. 工程力学, 2019, 36(7): 99-108. [16] 陈娟.圆钢管混凝土T型相贯节点动力性能试验和理论研究[D]. 杭州:浙江大学, 2011. [17] 李自林, 朱斌, 吴亮秦, 等. N型圆钢管相贯节点滞回性能的试验研究[J]. 建筑结构学报, 2008, 29(6): 69-74. [18] 国家市场监督管理总局.钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975—2018[S]. 北京: 中国质检出版社, 2018. [19] 全国钢标准化技术委员会.金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [20] WANG W, CHEN Y Y. Hysteretic behaviour of tubular joints under cyclic loading[J]. Journal of Constructional Steel Research, 2007, 63(10): 1384-1395. [21] 陈以一, 沈祖炎, 翟红, 等.圆钢管相贯节点滞回特性的实验研究[J]. 建筑结构学报, 2003, 24(6): 57-62. [22] 魏科丰, 付伟飞. T型圆钢管相贯节点滞回性能研究[J].钢结构, 2016, 31(5): 12-15. [23] ZHAO B D, LI F L, LIU C Q, et al. Effect of loading patterns on in-plane flexural hysteretic performance of CHS X-connections[J/OL]. Journal of Building Engineering, 2022, 57. [2022-10-01] https://doi.org/10.1016/j.jobe.2022.104839. [24] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社, 2015. [25] HU Y F, CHUNG K F, BAN H Y, et al. Structural testing and numerical modelling of T-joints between cold-formed S690 circular hollow sections under brace in-plane bending[J/OL]. Engineering Structures, 2022, 250.[2022-01-01] https://doi.org/10.1016/j.engstruct.2021.113317. [26] 袁智深, 甘宇, 姚尧, 等. N形主方支圆钢管间隙节点受力性能研究[J].工业建筑, 2022, 52(3): 132-140.
点击查看大图
计量
- 文章访问数: 44
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0