Research on S-N Curves of 930 MPa Large-Diameter High-Strength Cold-Rolled Threaded Prestressed Steel Rebars
-
摘要: 考虑大直径钢筋横截面材料不均匀问题及钢筋螺纹根部应力集中,对930 MPa级的75 mm直径高强冷滚压螺纹预应力钢筋横截面不同位置材料开展了单轴拉伸及疲劳性能试验研究,并对全尺寸钢筋进行单轴拉伸有限元数值模拟,以分析螺纹根部应力集中,基于计算结果及疲劳试验数据,修正得到了适用于930 MPa级75 mm直径高强冷滚压螺纹预应力钢筋的S-N曲线。结果表明:大直径高强冷滚压螺纹预应力钢筋单轴拉伸应力-应变曲线无屈服平台,930 MPa级的75 mm直径钢筋横截面材性存在显著差异;螺纹根部存在明显的应力集中,应力集中系数约为1.74;平均应力为700 MPa时,其疲劳性能与GB 50017—2017《钢结构设计标准》中考虑尺寸效应的Z11曲线接近。Abstract: Considering the problem of uneven cross-section of material of large-diameter steel rebars and the stress concentration at the root of thread rebars, the paper carried out an experimental study of uniaxial tensile and fatigue properties of materials at different positions of the cross-section of 930 MPa grade 75 mm diameter high-strength cold-rolled threaded prestressed steel rebars, and carried out a finite element numerical simulation of full-size steel rebars under uniaxial tensile to analyze the stress concentration at the thread root. The results showed that there was no yield platform in the stress-strain curves of large-diameter high-strength cold-rolled threaded prestressed steel rebars under uniaxial tensile, and there were significant differences in the cross-sectional material properties of the 930 MPa grade 75 mm diameter steel rebars. There was an obvious stress concentration at the thread root, and the stress concentration coefficient was about 1.74, and the fatigue properties was very close to the Z11 curve considering the size effect in the Steel Structure Design Standard (GB 50017—2017) when the average stress was 700 MPa.
-
[1] 林立华, 傅彦青, 常海林, 等. 翔安大桥装配式墩台冷滚压螺纹预应力钢筋微观组织与力学性能研究[J]. 工业建筑, 2023, 53(08): 199-205. [2] 吴上生, 孙韩磊, 杨琪. 基于冷滚压工艺的谐波减速器柔轮疲劳寿命分析[J]. 机械传动, 2019,43(01): 131-135+164. [3] 袁武华, 邓建伟, 申庆援, 等. 圆角滚压对螺栓残余应力分布及疲劳寿命的影响[J]. 锻压技术, 2023, 48(01): 108-114. [4] 崔怀俊, 盛剑. 大直径高强螺纹钢筋在港珠澳大桥预制墩台中的应用[J]. 中国港湾建设, 2017, 37(06): 77-80. [5] 朱万旭, 李明霞, 付委. 港珠澳大桥桥墩拼接用大直径螺纹钢筋应力腐蚀断裂试验研究[J]. 公路, 2020, 65(10): 112-117. [6] 朱万旭, 覃荷瑛, 甘国荣, 等. 港珠澳大桥节段预制桥墩高强钢筋联接锚固体系的关键技术研究[J]. 铁道学报, 2017, 39(05): 118-124. [7] 朱万旭, 张贺丽, 甘国荣, 等. 港珠澳大桥预制拼装桥墩预应力高强螺纹钢筋锚固体系试验研究[J]. 施工技术, 2017, 46(16): 101-105. [8] 陈俊, 李明, 肖祥淋, 等. 连续梁大直径预应力钢棒试验研究[J]. 中国铁路, 2016(01): 61-66. [9] 全国钢标准化技术委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [10] 全国钢标准化技术委员会. 合金结构钢: GB/T 3077—2015[S]. 北京: 中国标准出版社, 2015. [11] HILL H N. Determination of stress-strain relations from ‘offset’ yield strength values [J]. Pediatrics, 1994, 6(1): 93-97. [12] E MIRAMBELL, and E REAL, On the calculation of deflections in structural stainless steel beams: an experimental and numerical investigation [J], Journal of Constructional Steel Research 54, 1109133(2000). [13] K J R RASMUSSEN, Reply to: discussion of full-range stress-strain curves for stainless steel alloys [Jourournal of stainless steel alloys] [J], Journal of Constructional Steel Research 59, 1013251326(2003). [14] 饶兰, 岳清瑞, 郑云, 等. 高强耐蚀钢材料力学特性试验研究[J]. 建筑结构学报, 2020, 41(5): 147-156. [15] 全国钢标准化技术委员会. 金属材料疲劳试验数据统计方案与分析方法: GB/T 24176—2009[S]. 北京: 中国标准出版社, 2009. [16] H ZHAO, Analysis of the load distribution in a bolt-nut connector [J], Computer and Structures 53, 614651472(1994). [17] 李舜酩. 机械疲劳与可靠性设计[M]. 北京: 科学出版社, 2006. [18] 金丹, 田大将, 李江华, 等. 缺口半径对疲劳寿命影响的有限元分析[J]. 航空动力学报, 2015, 30(07): 1618-1623. [19] H NEUBER, Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law [J], Journal of Applied Mechanics 28, 4544550(1961). [20] NEUBER H. Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material [M]. Berlin: Springer Publishers, 1958. [21] M YU, D DUQUESNAY, and T TOPPER, Notch fatigue behaviour of SAE1045 steel [J], International Journal of Fatigue 10, 2109116(1988). [22] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003. [23] 赵少汴. 抗疲劳设计手册[M]. 北京: 机械工业出版社, 2015.
点击查看大图
计量
- 文章访问数: 103
- HTML全文浏览量: 11
- PDF下载量: 1
- 被引次数: 0