Safety Monitoring Twin System for Three Major Building Super-Large Excavation Pits Based on Internet of Things Technology
-
摘要: 随着经济蓬勃发展与城市化快速推进,超大基坑工程的规模与数量激增,然而,超大地下空间结构施工面临着地下环境复杂、致险因素众多等挑战,其安全问题日渐显著。针对超大地下空间结构施工过程中面临的复杂问题,通过引入物联网技术和数字孪生理念,提出了一个适用于超大地下空间结构施工的智能化安全监测孪生系统,同时探究了物联网和数字孪生的融合机理。该孪生系统利用BIM技术建立对应的物理施工模型,并通过物联网技术实时采集多源异构监测数据实现虚拟施工模型与物理施工模型的信息交互,借助孪生系统对多源异构数据进行实时安全分析,得到结构的安全状态并反馈在应用服务层中,通过实例项目验证了孪生系统在超大基坑施工中的有效性和实用性。Abstract: With the rapid development of economy and urbanization, the scale and number of super-large excavation pit projects have surged. However, the construction of super-large underground space structure is faced with challenges such as complex underground environment and many risk factors, and its safety problems are becoming more and more obvious. Aiming at the complex problems faced in the construction process of ultra-large underground space structure, the paper proposed an intelligent safety monitoring system suitable for the construction of ultra-large underground space structure by introducing the Internet of Things technology and the concept of digital twin, and explored the integration mechanism of Internet of Things and digital twin. BIM technology was applied in the twin to establish the corresponding physical construction model, and multi-source heterogeneous monitoring data was collected in real time through the Internet of Things technology to realize the information interaction between the virtual construction model and the physical construction model. The real-time safety analysis of multi-source heterogeneous data was carried out with the help of the twin system, and the safety status of the structure was obtained and fed back to the application service layer. The effectiveness and practicability of the twin system in the construction of super-large excavation pits were verified by an example project.
-
[1] 李小雪, 雷可, 谭忠盛, 等. 城市地下空间施工风险因素耦合效应研究[J]. 土木工程学报, 2021, 54(增刊1): 76-86. [2] 王国林, 于富来, 柳策, 等. 深基坑地表沉降预测及控制研究现状分析[J]. 工业建筑, 2023, 53(增刊1): 387-393,382. [3] 赵峰. 基于BIM的基坑工程自动化监测平台研发[J]. 煤田地质与勘探, 2018, 46(2): 151-158. [4] 廖原, 乔绍财, 黄海荣, 等. 某超高层深基坑支护设计及智能监测技术的应用[J]. 桂林理工大学学报, 2023, 43(1): 100-107. [5] 徐志春, 王军. 基于振弦式传感器的深基坑监测系统设计[J]. 传感器与微系统, 2015, 34(7): 79-81,84. [6] 张阳, 张国永, 李吉庆, 等. 基于物联网与WebGIS的深基坑在线监测平台研究[J]. 地下空间与工程学报, 2021, 17(增刊1): 328-336. [7] HASHASH Y M A, JAMMOUL M, FLEMING K L, et al. Construction monitoring for the transbay transit center excavation in San Francisco, California[G]//IFCEE 2015.2015: 2502-2511. [8] WU J J, PENG L M, LI J W, et al. Rapid safety monitoring and analysis of foundation pit construction using unmanned aerial vehicle images[J/OL]. Automation in Construction, 2021[2021-05-28].http://doi.org/10.1016/j.autcon.2021.103706. [9] 韩达光, 秦国成, 周银, 等. 基于BIM和三维激光扫描在基坑监测中的应用[J]. 重庆交通大学学报(自然科学版), 2019, 38(6): 72-76,102. [10] LEE H K, SONG M K, LEE S S. Prediction of subsidence during TBM operation in mixed-face ground conditions from realtime monitoring data[J/OL]. Applied Sciences, 2021[2021-12-20].http://doi.org/10.3390/app112412130. [11] LI X, LIU X, LI C Z, et al. Foundation pit displacement monitoring and prediction using least squares support vector machines based on multi-point measurement[J]. Structural Health Monitoring, 2018, 18(3): 715-724. [12] 徐文杰, 唐德泓, 谭儒蛟, 等. 数字基坑系统在深大基坑工程中的应用[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3510-3517. [13] 王卫东, 郑筱彦, 白明洲, 等. 城市深大基坑施工安全风险多因素耦合作用机理分析[J]. 公路, 2022, 67(3): 361-366. [14] 雷升祥, 黄明利, 谭忠盛. 城市地下大空间建设风险特征和分类研究[J]. 隧道建设(中英文), 2022, 42(10): 1663-1676. [15] 吕超, 彭建, 彭芳乐. 滨江超大超深基坑施工风险分析与控制[J]. 地下空间与工程学报, 2014, 10(6): 1440-1448. [16] 李小雪, 谭忠盛, 雷可, 等. 城市地下大空间多因素耦合的施工风险研究 [J]. 公路, 2021, 66(12): 217-226. [17] 雷升祥, 雷可, 王秀英, 等. 城市地下大空间施工重大风险多因素耦合演变模型[J]. 隧道建设(中英文), 2022, 42(8): 1331-1341. [18] 裴欣茹, 安宏斌, 郭健, 等. 深大基坑复杂系统风险特征及耦合效应研究[J]. 武汉轻工大学学报, 2023, 42(5): 69-75,89. [19] 刘占省, 史国梁, 杜修力, 等. 数字孪生驱动的预应力钢结构安全智能控制方法[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(10): 1043-1053. [20] 买亚锋, 张琪玮, 沙建奇. 基于BIM+物联网的智能建造综合管理系统研究[J]. 建筑经济, 2020, 41(6): 61-64. [21] 柏彬, 陈勇, 杜长青, 等. 基于物联网技术的智能安全监控建筑信息模型[J]. 工业建筑, 2020, 50(4): 175-179. [22] ZHANG M, GHODRATI N, POSHDAR M, et al. A construction accident prevention system based on the Internet of Things (IoT)[J/OL]. Safety Science, 2023[2023-01-01].http://doi.org/10.1016/j.ssci.2022.106012. [23] 曹庆, 刘博, 赵鸣. 基于物联网的结构施工监测技术应用[J]. 电子测量技术, 2016, 39(4): 169-172. [24] 宫志群, 王永志, 廖少明. 基于数字孪生的建设工程项目管理数字化[J/OL]. 土木工程学报,2024[2024-04-23].https://doi.org/10.15951/j.tmgcxb.23040317. [25] 杨昊, 余芳强, 高尚, 等. 基于数字孪生的建筑运维系统数据融合研究和应用[J]. 工业建筑, 2022, 52(10): 204-210,235.
点击查看大图
计量
- 文章访问数: 113
- HTML全文浏览量: 6
- PDF下载量: 4
- 被引次数: 0