Mechanical Properties of Rolled-Steel Special-Shaped Short Composite Columns with Different Structural Forms Under Axial Compression
-
摘要: 为研究轧制型材组合异形柱在轴向荷载作用下的受力性能,采用ABAQUS软件平台建立不同构造、是否填充混凝土的组合异形柱短柱试件有限元模型。基于现有试验结果验证了建模方法的准确性,揭示了其在轴压荷载作用下的承载性能、破坏模式和受力机理,并分析了不同构造、是否填充混凝土对其轴压性能的影响规律。研究结果表明,轧制型材组合异形柱均为整体受压破坏,伴随钢管局部屈曲破坏;填充混凝土后能够明显改善组合异形柱的破坏模式,提高承载力;纯H型钢组合试件采用封口板形成闭口截面后承载力提升显著。采用现有标准/规范对轧制型材组合异形柱的承载力进行计算,相对差值在11%以内,计算值与模拟值吻合较好,计算值能够较好预测轧制型材组合异形柱短柱的轴压承载力。Abstract: The mechanical properties of short composite columns composed of rolled-steel special-shaped profiles under various structural forms and subject to axial compression were investigated. Numerical simulations were conducted by using the ABAQUS finite element software, focusing on rolled-steel special-shaped short composite columns with and without concrete. The accuracy of the modeling approach was corroborated by comparing with existing experimental results, thus establishing the finite element models of the short composite columns. The analysis uncovered the load-bearing performance, failure mode, and force mechanism of the composite columns under axial compression. Furthermore, it explored the effects of different structural forms and the presence or absence of concrete on the axial compressive properties. Findings indicated that all composite columns underwent a complete compression failure, which was accompanied by local buckling failure of steel tubes. The inclusion of concrete clearly ameliorated the failure mode of composite columns and enhanced the bearing capacity. However, the bearing capacity of pure H-steel composite columns improved significantly upon the formation of a closed section by sealing plates. Existing standards and codes were employed to compute the bearing capacity of the short composite columns. The relative difference between the calculated and simulated values was less than 11%, indicating a good agreement. Therefore, these calculated methods can be reliably used to predict the bearing capacity of rolled-steel special-shaped short composite columns under axial compression.
-
[1] 杜国锋, 徐礼华, 徐浩然, 等. 钢管混凝土T形短柱轴压力学性能试验研究[J]. 华中科技大学学报(城市科学版), 2008, 25(3): 188-190. [2] 陈雨, 沈祖炎, 雷敏, 等. T形钢管混凝土短柱轴压试验[J]. 同济大学学报(自然科学版), 2016, 44(6): 822-829. [3] ZUO Z L, CAI J, YANG C, et al. Eccentric load behavior of L-shaped CFT stub columns with binding bars[J]. Journal of Constructional Steel Research, 2012, 72: 105-118. [4] LIU X G, XU C Z, LIU J P, et al. Research on special-shaped concrete-filled steel tubular columns under axial compression[J]. Journal of Constructional Steel Research, 2018, 147: 203-223. [5] XIAO Y F, BIE X M, SONG X, et al. Performance of composite L-shaped CFST columns with inner I-shaped steel under axial compression[J]. Journal of Constructional Steel Research, 2020, 170, 106138. [6] 杜国锋, 宋鑫, 张志忠, 等. 内置钢骨的L形截面钢管混凝土中长柱轴心受压试验研究[J]. 四川大学学报(工程科学版), 2013, 5(5): 43-50. [7] 张宁, 申彦飞, 李攀, 等. 多室式钢管混凝土组合T形截面中长柱轴压性能研究[J]. 建筑结构学报, 2015, 36(增刊1): 254-261. [8] 左志亮, 蔡健, 钟国坤, 等. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104-113. [9] 杜国锋, 余思平, 宋鑫, 等. 钢骨-T形钢管混凝土短柱轴心受压试验研究[J]. 建筑结构, 2012, 42(2): 144-147. [10] TU Y Q, SHEN Y F, LI P. Behaviour of multi-cell composite T-shaped concrete-filled steel tubular columns under axial compression[J]. Thin-Walled Structures, 2014, 85: 57-70. [11] LIU J P, SONG H, YANG Y L. Research on mechanical behavior of L-shaped multi-cell concrete-filled steel tubular stub columns under axial compression[J]. Advances in Structural Engineering, 2018, 22(2): 427-443. [12] 屠永清, 文千山. L形钢管混凝土柱轴压承载力计算[J]. 建筑结构学报, 2013, 34(增刊1): 314-320. [13] XU M Y, ZHOU T, CHEN Z H, et al. Experimental study of slender LCFST columns connected by steel linking plates[J]. Journal of Constructional Steel Research, 2016, 127: 231-241. [14] CHEN X D, ZHOU T, CHEN Z H, et al. Mechanical properties of special-shaped concrete-filled steel tube columns under eccentric compression[J]. Journal of constructional steel research, 2020,167,105779. [15] XIONG Q Q, CHEN Z H, KANG J F, et al. Experimental and finite element study on seismic performance of the LCFST-D columns[J]. Journal of Constructional Steel Research, 2017,137:119-134. [16] 张旺.L形钢管混凝土组合异形柱梁节点性能分析及试验研究[D].天津:天津大学,2018. [17] 赵炳震, 陈志华, 武亚鹏, 等. 方钢管混凝土组合异形柱建模方法研究[J]. 建筑钢结构进展, 2019, 21(4): 78-85. [18] CHEN Z H, LIU J, ZHOU T, et al. Uniaxial eccentric-compression performance analysis for double-plate connected concrete-filled steel-tube composite columns[J]. Journal of Structural Engineering, 2020,146, 040201618. [19] 韩林海. 钢管混凝土结构:理论与实践[M]. 2版. 北京:科学出版社,2007:71-75. [20] 中华人民共和国住房和城乡建设部.混凝土结构设计规范: GB 50010—2010[S]. 北京:中国建筑工业出版社,2015. [21] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017 [S].北京:中国建筑工业出版社, 2018. [22] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936—2014 [S]. 北京:中国建筑工业出版社, 2014. [23] 中国工程建设标准化协会. 矩形钢管混凝土组合异形柱结构技术规程:T/CECS 825—2021[S]. 北京:中国建筑工业出版社, 2021.
点击查看大图
计量
- 文章访问数: 35
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0