A Design Method for One-Side Bolted Connection Joints of Prefabricated Concrete-Encased CFST Composite Column and the Analysis of Seismic Performance of CECFST Frames
-
摘要: 钢管混凝土叠合柱具有优越的力学性能和耐久性,在工程中得到了广泛应用。然而目前钢管混凝土叠合柱-钢梁连接节点常采用焊接连接,节点区施工困难且焊接工作量大,焊接节点在地震下易发生脆性断裂。研究了钢管混凝土叠合柱与钢梁单边螺栓连接节点,基于节点内力在外混凝土的扩散机制,揭示了外混凝土对单边螺栓受拉和钢梁翼缘受压承载力和刚度的影响,建立了节点承载力和初始刚度设计方法。采用OpenSEES程序建立了钢管混凝土叠合柱连接框架的弹塑性分析模型;基于组件法和叠加原理,考虑了节点弯矩-转角和剪力-剪切关系模型,通过试验结果验证了分析模型的正确性,研究了钢管混凝土叠合柱单边螺栓连接框架在不同烈度地震下的动力响应,研究此类框架结构的抗震性能是否满足现行相关规范要求。Abstract: Concrete-encased concrete-filled steel tubular (CECFST) composite columns possess better durability and fire performance, and have been widly used in engineering practice. However, welding joints are generally used to connect the steel beam to CECFST column, leading significant difficulty in joint construction accompanied by a large amount of welding work. Moreover, welding joints are more likely to appear fracture under earthquake loads. The load transfer mechanism within the encased concrete was analyzed and its influence on the bearing capacity and stiffness of one-side bolts in tension and beam flanges in compression were discussed. The calculation model for the bearing capacity and stiffness of joints was established. OpenSEES software was employed to model the CECFST frame, in which the moment-rotation and shear force-shear curves were obtained based on the component method and superstition method, respectively. The accurary of the model was verified through test results, and the dynamic response of the CECFST frame with one-side bolted connections under different seismic intensities was studied. The seismic performance for such frame structures was investigated to determine whether it meets the requirements of current relevant specifications.
-
[1] 吴庆雄, 许志坤, 袁辉辉, 等.外包超高性能混凝土钢管混凝土叠合短柱轴压性能试验与分析[J].建筑结构学报, 2023, 44(12):183-193. [2] 张瑞, 陈建伟, 吴山, 等.套筒灌浆连接钢管混凝土叠合柱偏压性能试验研究[J].建筑结构学报, 2023, 44(增刊1):239-247. [3] CHEN J Y, WANG F C, HAN L H, et al. Flexural performance of concrete-encased CFST box members[J]. Structures, 2020, 27: 2034-2047. [4] MA D Y, HAN L H, LI W, et al. Behaviour of concrete-encased CFST stub columns subjected to long-term sustained loading[J]. Journal of Constructional Steel Research, 2018, 151: 58-69. [5] 聂建国, 王宇航, 陶慕轩, 等. 钢管混凝土叠合柱-钢筋混凝土梁外加强环节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33(7): 88-97. [6] LIAO F Y, HAN L H, TAO Z. Behaviour of composite joints with concrete encased CFST columns under cyclic loading: experiments[J]. Engineering Structures, 2014, 59: 745-764. [7] LI W, XU L F, QIAN W W. Seismic performance of 3-D steel beam to concrete-encased CFST column joints: tests[J]. Engineering Structures, 2021, 232, 111793. [8] 钱炜武, 李威, 韩林海, 等. 带楼板钢管混凝土叠合柱-钢梁节点抗震性能数值分析[J]. 工程力学, 2016, 33(增刊1): 95-100. [9] WANG W Q, WANG J F, GUO L, et al. Behavior and analytical investigation of assembled connection between steel beam and concrete encased CFST column[J]. Structures, 2020, 24: 562-579. [10] WANG K, LUO H H, GUO K, et al. Seismic collapse resistance performance on out-jacketing frames with concrete-encased CFST columns for adding storeys[J]. Structures, 2021, 33: 41-53. [11] 姜涛. 半刚性钢管混凝土组合框架节点的抗震性能及设计方法[D]. 合肥: 合肥工业大学, 2012. [12] YANG Y F, HAN L H. Experiments on rectangular concrete-filled steel tubes loaded axially on a partially stressed cross-sectional area[J]. Journal of Constructional Steel Research, 2009, 65: 1617-1630. [13] ACI. Building code requirements for structural concrete (ACI 318M-11) and commentary[S]. USA: American Concrete Institute, 2011. [14] OKTAVIANUS Y, CHANG H F, HELEN M, et al. Component model for pull-out behaviour of headed anchored blind bolt within concrete filled circular hollow section[J]. Engineering Structures, 2017, 148: 210-224. [15] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准:GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2024. [16] WANG J F, HAN L H, BRAIN U. Behaviour of flush end plate joints to concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2009, 65(4): 925-939. [17] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018. [18] WANG J F, HAN L H, BRAIN U Y. Behaviour of flush end plate joints to concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2009, 65: 925-939. [19] CEN. Eurocode 3: design of steel structures-part 1-8: design of joints:ENV 1993-1-8[S]. Brussels: CEN, 2005. [20] 钱炜武. 钢管混凝土叠合柱-钢梁连接节点抗震性能研究[D]. 北京: 清华大学, 2017. [21] HAN L H, YAO G H, TAO Z. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1): 26-34. [22] YASSIN M H M. Nonlinear analysis of prestressed concrete structure under monotonic and cyclic loads[D]. Berkeley: University of California, 1994. [23] 胡志涵. 装配式钢管混凝土叠合柱节点抗震性能及框架地震易损性分析[D]. 合肥:合肥工业大学, 2021. [24] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国标准出版社, 2012. [25] 中华人民共和国住房和城乡建设部. 建筑抗震设计标准:GB/T 50011—2010[S]. 北京: 中国标准出版社, 2024. [26] FEMA. Quantification of building seismic performance factors: FEMA P-695[S]. Washington D.C: Federal Emergency Management Agency, 2009. [27] MCCORMICK J, ABURANO H, IKENAGA M, et al. Permissible residual drift deformation levels for building structures considering both safety and human elements[C]// Proceedings of the 14th World Conference on Earthquake Engineering. Beijing:2008: 1-8.
点击查看大图
计量
- 文章访问数: 13
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0