Optimization of Shield Construction Sequence and Excavation Face Longitudinal Spacing in Small-Clearance Three-Lane Tunnels
-
摘要: 随着城市轨道交通迅速发展,出现了大量的小净距隧道盾构项目,其中三线小净距隧道施工设计理论目前仍未建立完善。依托实际工程,针对施工次序进行优化分析,设计了4种开挖工况,考虑了隧道开挖面之间的纵向间距对地表沉降、管片位移和围岩压力的影响规律。结果表明:4种工况沉降槽均呈V形,宽度均约为55 m (9D,D为隧道洞径);先开挖中间隧道的工况4沉降峰值为10.16 mm,小于先开挖两侧隧道工况2的11.10 mm;单线施工时,地表沉降范围为开挖面后方2.5D处至前方1.5D处;相邻线路同时施工且轴线间距小于20 m时,2条隧道的掌子面至少保持16m (2.5D)纵向间距;先行隧道另一侧存在既有隧道时,开挖面纵向间距至少保持12 m (2D),以减小对地表沉降、管片位移和围岩压力的影响。Abstract: With the rapid development of urban rail transit, a large number of small-clearance tunnel shield projects have emerged, among which the theory of small-clearance tunnel construction design for three-lane tunnels has not yet been well established. Based on an actual project, this paper conducted an optimization analysis of the construction sequence, designed four excavation conditions, and examined the influence of the longitudinal spacing between tunnel excavation surfaces on surface settlement, segment displacement, and surrounding rock pressure. The results showed that: the sinkholes under the four conditions were all V-shaped, with a width of approximately 55 m (9D); the peak settlement in Case 4, where the middle tunnel was excavated first, was 10.16 mm, smaller than that in Case 2, where the tunnels on both sides were excavated first (11.10 mm); the range of ground surface settlement extended from 2.5D behind the excavation face to 1.5D ahead of the excavation face in the case of singlelane construction; when adjacent lines were constructed simultaneously and the axis spacing was less than 20 m, the working faces of the two tunnels maintained at least 16 m (2.5D) longitudinal spacing. When existing tunnels were present on the other side of the first tunnel, the longitudinal spacing of the excavation faces was kept at least 12 m (2D) to minimize the impact on ground surface settlement, segment displacement, and surrounding rock pressure.
-
[1] 姚志雄, 刘耀星, 张忠星, 等. 四孔小净距隧道浅埋下穿高速公路施工力学特性[J]. 地下空间与工程学报, 2022, 18(6): 2052-2061. [2] LIU Z Y, XUE J F, YE J Z, et al. A simplified two-stage method to estimate the settlement and bending moment of upper tunnel considering the interaction of undercrossing twin tunnels[J]. Transportation Geotechnics, 2021, 29, 100558. [3] 李国鹏, 王瑞, 赵晓薇, 等. 小净距盾构隧道施工诱发邻近建筑物沉降分析[J]. 铁道建筑, 2023, 63(1): 105-110. [4] WANG J, GAO A, CUI T, et al. Monitoring method of large section bifurcated small clear distance tunnel during information construction control[J]. Applied Sciences, 2023, 13(6): 3447-3467. [5] 姚志雄, 刘耀星, 张忠星, 等. 四孔小净距隧道浅埋下穿高速公路施工力学特性[J]. 地下空间与工程学报, 2022, 18(6): 2052-2061. [6] 徐才厚, 晏启祥, 吴悦, 等. 小净距盾构隧道开挖空间效应与掌子面纵向间距的合理选择[J]. 铁道建筑, 2021, 61(9): 52-57. [7] 陈秋南, 赵磊军, 谢小鱼, 等. 浅埋偏压大跨花岗岩残积土小净距隧道合理间距研究[J]. 中南大学学报(自然科学版), 2015, 46(9): 3475-3480. [8] 孙振宇, 张顶立, 房倩, 等. 浅埋小净距公路隧道围岩压力分布规律[J]. 中国公路学报, 2018, 31(9): 84-94. [9] ZHANG H, ZHANG G, PAN Y, et al. Experimental study on the mechanical behavior and deformation characteristics of lining structure of super-large section tunnels with a small clearance[J]. Engineering Failure Analysis, 2022, 136, 106186. [10] 陈越峰, 张庆贺, 张颖, 等. 近距离三线并行盾构隧道施工实测分析[J]. 地下空间与工程学报, 2008(2): 335-340. [11] 李然, 陈平, 张顶立, 等. 大断面三孔小净距隧道围岩稳定性数值研究及工程实践[J]. 土木工程学报, 2022, 55(11): 83-95. [12] 耿建仪, 梁志辉, 杨新安, 等. 八达岭长城站小净距三洞隧道中岩柱受力特性与支护优化研究[J]. 隧道建设(中英文), 2019, 39(12): 2000-2010. [13] 高始军. 地铁隧道近距离下穿高铁大直径盾构隧道施工变形特征分析[J]. 铁道勘察, 2022, 48(3): 113-117. [14] 刘前, 刘瑜, 梁建文, 等. 基于反应位移法的复杂软土盾构隧道横断面抗震分析[J]. 地震工程学报, 2020, 42(5): 1217-1224. [15] 欧雪峰, 张学民, 刘学勤, 等. 基坑开挖与降水引起下卧隧道变形的解析计算方法[J]. 铁道学报, 2019, 41(3): 147-154. -
点击查看大图
计量
- 文章访问数: 37
- HTML全文浏览量: 8
- PDF下载量: 2
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: