Experimental Research on Flexural Performance of UHPC Encased CFSTs Under Pure Bending
-
摘要: UHPC包覆钢管混凝土叠合构件具有承载力高和耐久性能优越等优点。为研究其抗弯性能,完成了5根UHPC包覆钢管混凝土叠合构件纯弯试验,主要参数为钢纤维掺量和含钢管混凝土率。基于试验研究,考察了不同参数对试件的破坏形态、跨中弯矩-挠度曲线、极限抗弯承载力、抗弯刚度和延性的影响规律,结果表明:外包UHPC钢管混凝土叠合构件抗弯性能优异,受弯状态下各组件能保持良好的协同工作,试件的抗弯承载力随着外包UHPC钢纤维掺量和含钢管混凝土率的增大而增大,尤其在钢纤维掺量由0%变化为1%时承载力提升幅度尤为明显。采用现行规程公式计算本研究UHPC包覆钢管混凝土叠合构件抗弯承载力偏于安全11%~38%,计算抗弯刚度总体上偏于保守。Abstract: Ultra-high-performance concrete (UHPC) encased concrete-filled steel tubes (CFST) have advantages such as high bearing capacity and superior durability. In order to study their flexural performance, five pure bending tests of UHPC encased CFSTs members were designed. The main parameters were the steel fiber content and the ratio of concrete-filled steel tube. Based on the experimental study, the effects of different parameters on failure mode,midspan load-deflection curves, ultimate flexural capacity, flexural stiffness, and ductility were investigated. The results showed that UHPC encased CFSTs members exhibited excellent performance. Under bending, each component could maintain good collaboration. The flexural capacity increased with the increase of the UHPC steel fiber content and the ratio of concrete-filled steel tube, especially when the steel fiber content increased from 0% to 1%, the increase in bearing capacity was particularly significant. The predictions by current codes and standards for flexural capacity of UHPC encased CFST members were 11%-38% lower than the measured ones, and the predicted flexural stiffness was generally conservative.
-
Key words:
- UHPC encased /
- CFST /
- composite member /
- flexural capacity /
- flexural stiffness
-
[1] HAN L H, LIAO F Y, TAO Z. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending[J]. Journal of Constructional Steel Research, 2009, 65(8/9): 1607-1616. [2] LI W, XU L F, QIAN W W. Seismic performance of 3-D steel beam to concrete-encased CFST column joints: tests[J]. Engineering Structures, 2021, 232(4), 111793. [3] MAD Y, HAN L H, ZHAO X L. Seismic performance of the concrete-encased CFST column to RC beam joint: experiment[J]. Journal of Constructional Steel Research, 2019, 154(3): 134-148. [4] HANL H, AN Y F, ROEDER C, et al. Performance of concrete-encased CFST box members under bending[J]. Journal of Constructional Steel Research, 2015, 106: 138-153. [5] AN Y F, HAN L H. Behaviour of concrete-encased CFST columns under combined compression and bending[J]. Journal of Constructional Steel Research, 2014, 101: 314-330. [6] LIAO F Y, HAN L H, TAO Z. Behaviour of composite joints with concrete encased CFST columns under cyclic loading: experiments[J]. Engineering Structures, 2014, 59: 745-764. [7] CHEN J Y, WANG F C, HAN L H, et al. Flexural performance of concrete-encased CFST box members[J]. Structures, 2020, 27:2304-2047. [8] 胡昌明, 韩林海. 圆形钢管混凝土叠合构件抗冲击性能试验研究[J]. 土木工程学报, 2016, 49(10): 11-17. [9] 尧国皇, 廖飞宇, 李永进, 等, 国内钢管混凝土核心柱的研究与应用综述[J].特种结构, 2013, 30(1):28-33. [10] LIN Y Z, YAN J C, CAO Z G, te al. Ultimate strength behaviour of S-UHPC-S and SCS sandwich beams under shear loads[J]. Journal of Constructional Steel Research, 2018, 149: 195-206. [11] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183-194. [12] 陈宝春, 李莉, 罗霞, 等. 超高强钢管混凝土研究综述[J]. 交通运输工程学报, 2020, 20(5): 1-21. [13] WEI H, FAN Z C, SHEN P L, et al. Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concrete-filled steel tube columns[J]. Construction and Building Materials, 2020, 254(10), 119150. [14] HUA J Y, HUANG Y F, LI W J, et al. Compressive behaviour of UHPC-filled square high-strength steel tube stub columns under eccentric loading[J]. Journal of Constructional Steel Research, 2022, 198, 107558. [15] CHENH Y, LIAO F Y, YANG Y X, et al. Behavior of ultra-high-performance concrete (UHPC) encased concrete-filled steel tubular (CFST) stub columns under axial compression[J]. Journal of Constructional Steel Research, 2023, 202, 107795. [16] HE S H, YANG G, ZHOU W J, et al. Evaluation of shear lag effect in HSS-UHPC composite beams with perfobond strip connectors: experimental and numerical studies[J]. Journal of Constructional Steel Research, 2022, 194, 107312. [17] CHEN G B, ABDELBASET H, TIAN L, et al. Hot spot stress investigation on rib-to-deck-to-floor beam connections in UHPC reinforced OSDs[J]. Journal of Constructional Steel Research, 2021, 179, 106517. [18] 中国建筑材料联合会协会.超高性能混凝土结构设计规程:T/CBMF 185—2022 T/CCPA 35—2022[S]. 北京: 中国标准出版社, 2022. [19] 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152—2012[S].北京:中国建筑工业出版社, 2012. [20] 中国工程建设标准化协会. 钢管混凝土叠合柱结构技术规程: T/CECS 188—2019[S]. 北京: 中国建筑工业出版社, 2020. [21] European Committee for Standardization(ECS). Design of steel and concrete structures part 1-1:general rules for building:EC4 [S]. Brussels:ECS, 2010. [22] American Institute of Steel Construction (AISC). Specification for structural steel buildings[S]. Chicago: AISC, 2010. [23] 中华人民共和国住房和城乡建设部.混凝土结构设计标准:GB/T 50010—2010[S].北京:中国建筑工业出版社, 2024. [24] 福建省住房和城乡建设厅. 钢管混凝土结构技术规范:DBJ/T 13-51—2020[S]. 北京:中国建筑工业出版社, 2020. [25] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社, 2016.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 6
- PDF下载量: 2
- 被引次数: 0