Research on Construction and Optimization of Lattice-Based Printing Based on Finite Element Analysis
-
摘要: 近年来机械臂打印建造进步迅速,在建筑领域中也有长足发展。然而机械臂平台晶格化打印的系统依然面临着打印大尺寸建筑构件及建筑物整体打印成型的现实需求。文章首先采用Rhino Vault工具和Karamba3D有限元优化软件建构了壳体构件;然后通过壳体构件的变截面优化以及应用晶格化分段打印的方法,为大尺寸壳体形态构件提供了一套从设计到建造的完整流程;最后通过打印建造试验进行了验证。其目标是提高大尺寸壳体晶格化打印的结构可行性,以期为建筑师在数字设计与建造一体化方面的探索提供借鉴。Abstract: In recent years, there has been rapid progress in the use of robotic arms for 3D printing construction, and it has also made significant advancements in the field of architecture. However, the system of lattice-based printing using robotic arm platforms still faces the practical need to print large-scale building components and achieve the overall printing of buildings. The paper first utilized Rhino Vault tools and Karamba3D finite element optimization software to construct shell components. Secondly, through the optimization of variable cross-sections of shell components and the application of lattice segmented printing methods, a complete process from design to construction for large-scale shell morphological components was provided. Finally, this process was validated through printing and construction experiments. The goal is to enhance the structural feasibility of large-scale shell lattice printing, aiming to offer references for architects exploring the integration of digital design and construction.
-
Key words:
- robotic arm /
- lattice-based printing /
- variable cross-section shell /
- toolpath design
-
[1] ROBIN E.Translation from drawings to building and other essays[M].The United States: the MIT Press,1997. [2] 克里斯·亚伯.建筑与个性:对文化和技术变化的回应[M].北京:中国建筑工业出版社,2003. [3] 胡骉,杨子江.基于机器人自主识别的智能建造展望[C]//胡聶. 数智营造:2020年全国建筑院系建筑数字技术教学与研究学术研讨会.长沙:2020:285. [4] 陶雨濛, 张云峰, 陈以一,等. 3D 打印技术在土木工程中的应用展望[J]. 钢结构, 2014, 29(8): 1-8. [5] BARROW L R.Digital design and making 30 Years after[C]//Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture (ACADIA). 2006:158-177. [6] TALBOTT K Y L E. Hand-machine con-flict and the ethics ofdigital fabrication[C]//Proceedings of the 94th Annual Meeting of the Association of Collegiate Schools of Architecture. Salt Lake City: 2006:207-214. [7] KNIPPERS J, LA MAGNA R, MENGES A, et al. ICD/ITKEresearch pavilion 2012: coreless filament winding based on themorphological principles of an arthropod exoskeleton[J]. Architectural Design, 2015, 85(5): 48-53. [8] LOVEC B J L T A O L. 3D printed structure case study: AMIE 1.0 [M]. Boston:IASS, 2018. [9] HACK N, LAUER W V, GRAMAZIO F, et al. Mesh mould: differentiation for enhanced performance [J]. CAADRIA:Rethinking Comprehensive Design,2014, 19(3):2-5. [10] HELM V, WILLMANN J, THOMA A, et al. Iridescence print: robotically printed lightweight mesh structures [J]. 3D Printing and Additive Manufacturing, 2015, 2(3): 117-122. [11] 于雷.交集亦或补集:关于机械臂参与下的数字建沟自主性讨论[J].建筑学报,2014(8):32-35. [12] YU L, HUANG Y J.Highly informed robotic 3D printed polygon mesh[C]//The Association for Computer Aided Design in Architecture. 2016:307. [13] 袁烽.砖的数字化建构[J].世界建筑, 2014(7): 26-29. [14] 袁烽. 云亭中国,上海[J]. 世界建筑导报, 2018, 33(3): 42-43. [15] KATHRIN D, HACK N, SANDY T, et al. Mobile robotic fabrication beyond factory conditions: casestudy mesh mould wall of the DFAB HOUSE[J]. Construction Robotics, 2019, 3(1-4): 53-67. [16] 陈哲文.基于拓扑优化算法的机器人改性塑料空间打印方法研究[D]. 上海:同济大学,2019. [17] 曹婷,施沃兹·约瑟夫.直纹的曲面之美:光滑复合双曲面结构的原理与设计运用[J].建筑学报,2021(11):104-109. [18] JOSEPH S.Graphic statics and their potential for digital design and fabrication with concrete[J].Cementand Concrete Research, 2018,6(15):1-13. [19] PREISINGER C. Linking structure and parametric geometry[J]. Architectural Design, 2013,83: 110-113. [20] 杨彬.结构优化准则法[M]. 上海:同济大学,2018. [21] SHELTON T. Cellular fabrication [J]. Technology|Architecture+Design, 2017, 1(2): 251-253. [22] 袁烽,张立名,陈哲文.从连续到离散 关于2018威尼斯建筑双年展中国馆"云市"的建造实验[J]. 时代建筑, 2018(5): 78-83.
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0