中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位资源利用的火星基地建造方案

赵嘉成 罗宇轩 张道博 包查润 冯鹏

赵嘉成, 罗宇轩, 张道博, 包查润, 冯鹏. 基于原位资源利用的火星基地建造方案[J]. 工业建筑, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901
引用本文: 赵嘉成, 罗宇轩, 张道博, 包查润, 冯鹏. 基于原位资源利用的火星基地建造方案[J]. 工业建筑, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901
ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901
Citation: ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901

基于原位资源利用的火星基地建造方案

doi: 10.3724/j.gyjzG23092901
基金项目: 

国家自然科学基金项目:月壤多尺度力学特性与工程资源利用技术(42241109);清华大学国强研究院项目:面向月面科研站机器人建造的新型结构研究(2021GQG1001);CAST基金资助项目:基于月面原位能量辅助的月壤增材制造关键技术(2023ZY1050001);新基石科学基金会:科学探索奖。

详细信息
    作者简介:

    赵嘉成,男,1999年出生,博士研究生,主要从事基于复合材料的主动弯曲建造(bending-active)方面的研究。

    通讯作者:

    冯鹏,男,1977年出生,博士,教授,主要从事新材料结构与新型结构的研究,fengpeng@tsinghua.edu.cn。

A Novel Approach for Martian Base Construction Using In-Situ Resources

  • 摘要: 火星是太阳系内最接近地球环境的星球,具有非常重要的战略价值与意义。随着“天问一号”一次性完成火星“绕、落、巡”三大任务,火星基地建造便成为推进我国深空探测过程的下一重要目标。通过调研现有文献中火星环境和资源条件,并将其与月球、地球条件进行对比分析,提出了火星建造亟需解决的特有难题。基于调研,适用于火星的建造技术包括挖掘建造、化学气相沉积成型、熔融沉积成型、火壤粘接成型等;提出了一种基于原位资源的火星基地自动化建造方案——中华穹顶,即采用充气气囊、碳纤维骨架、硫磺混凝土外覆层和组合舱门的形式,为火星基地建造提供了一个技术思路。
  • [1] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10.
    [2] 刘洋, 吴兴, 刘正豪, 等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评, 2021, 52(04): 416-436.
    [3] J BLAMONT, A roadmap to cave dwelling on the Moon and Mars [J], Advances in Space Research 54, 1021402149(2014).
    [4] 卢波. 火星探测的未来规划[J]. 国际太空, 2009(3): 17-21.
    [5] 程绍驰, 吴水香. “火星科学实验室”主要技术突破分析[J]. 中国航天, 2012(11): 30-34.
    [6] 王宇虹. 长征五号火箭成功发射天问一号火星探测器[J]. 导弹与航天运载技术, 2020(04): 101+2.
    [7] 欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(06): 591-601.
    [8] 刘汉生, 王江, 赵健楠, 等. 典型模拟火星土壤研究进展[J]. 载人航天, 2020, 26(03): 389-402.
    [9] 刘洋, 刘正豪, 吴兴, 等. 火星的水环境演化[J]. 地质学报, 2021, 95(09): 2725-2741.
    [10] 肖万博, 王彦宾. “洞察”号火星表面地震探测中的发现[J]. 地球与行星物理论评, 2021, 52(02): 211-226.
    [11] VERSEUX C, BAQUE M, LEHTO K, et al. Sustainable life support on Mars: the potential roles of cyanobacteria [J]. International Journal of Astrobiology, 2016, 15(1): 65-92.
    [12] BIEMANN K, RUSHNECK D R, et al. The composition of the atmosphere at the surface of Mars [J]. Journal of Geophysical Research, 1977, 82(28): 4635-4639.
    [13] S J WEIDENSCHILLING, The distribution of mass in the planetary system and solar nebula [J], Astrophysics and Space Science 51, 1153158(1977).
    [14] HASSLER D M, ZEITLIN C, WIMMER-SCHWEINGRUBER R F, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover [J]. Science, 2014, 343(6169). DOI: 10.1126/science.12447.
    [15] J T SCHOFIELD, J R BARNES, and R HABERLE, et al.The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment [J], Science 278, 534417521758(1997).
    [16] 史建魁, 刘振兴, 程征伟. 火星探测研究结果分析[J]. 科技导报, 2011, 29(10): 64-70.
    [17] 孙伟家, 王一博, 魏勇, 等. 火星地震学与内部结构研究[J]. 地球与行星物理论评, 2021, 52(04): 437-449.
    [18] B KENDA, M DRILLEAU, and R F GARCIA, et al.Subsurface structure at the insight landing site from compliance measurements by seismic and meteorological experiments [J/OL], Journal of Geophysical Research: Planets 125, 6e2020JE006387(2020).
    [19] ZUBRIN R, WAGNER R. The Case for Mars [M]. 阳曦, 徐蕴芸, 译. 北京: 科学出版社, 2012.
    [20] 冯鹏, 包查润, 张道博, 等. 基于月面原位资源的月球基地建造技术[J]. 工业建筑, 2021, 51(01): 169-178.
    [21] J F BELL, M T LEMMON, and T C DUXBURY, et al.Solar eclipses of Phobos and Deimos observed from the surface of Mars [J], Nature 436, 70475557(2005).
    [22] H CHEN, T SARTON DU JONCHAY, and L HOU, et al.Integrated in-situ resource utilization system design and logistics for Mars exploration [J], Acta Astronautica 170, 8092(2020).
    [23] 党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(02): 129-133

    +144.
    [24] B C CLARK, A K BAIRD, and H J ROSE JR., et al.The Viking X ray fluorescence experiment: Analytical methods and early results [J], Journal of Geophysical Research 82, 2845774594(1977).
    [25] B C CLARK, A K BAIRD, and R J WELDON, et al.Chemical composition of Martian fines [J], Journal of Geophysical Research: Solid Earth 87, B121005910067(1982).
    [26] H WANKE, J BRÜCKNER, and G DREIBUS, et al.Chemical composition of rocks and soils at the Pathfinder Site [J], Space Science Reviews 96, 1/4317330(2001).
    [27] R GELLERT, R RIEDER, and R C ANDERSON, et al.Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray Spectrometer [J], Science 305, 5685829832(2004).
    [28] R RIEDER, R GELLERT, and R C ANDERSON, et al.Chemistry of rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer [J], Science 305, 568517461749(2004).
    [29] BLAKE D F, MORRIS R V, KOCUREK G, et al. Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow [J]. Science, 2013, 341(6153): 1239505. DOI: 10.1126/ science.1239505.
    [30] TAYLOR S R, MCLENNAN S M. Planetary Crusts: Their Composition, Origin and Evolution [M]. UK: Cambridge University Press, 2009.
    [31] RUDNICK R L, GAO S. Composition of the continental crust [J]. Treatise on geochemistry, 2003, 3: 659. DOI: 10.1016/0016-7037(95)00038-2.
    [32] WILCOX B, NASIF A, WELCH R. Implications of Martian Rock Distributions on Rover Scaling[R]. NASA Technical Reports Server (NTRS), 1997.
    [33] H J MOORE, G D CLOW, and R E HUTTON, A summary of Viking sample‐trench analyses for angles of internal friction and cohesions [J], Journal of Geophysical Research: Solid Earth 87, B121004310050(1982).
    [34] H J MOORE, D B BICKLER, and J A CRISP, et al.Soil‐like deposits observed by Sojourner, the Pathfinder rover [J], Journal of Geophysical Research: Planets 104, E487298746(1999).
    [35] ROVER TEAM, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner [J], Science 278, 534417651768(1997).
    [36] R SULLIVAN, R ANDERSON, and J BIESIADECKI, et al.Cohesions, friction angles, and other physical properties of Martian regolith from Mars exploration rover wheel trenches and wheel scuffs [J], Journal of Geophysical Research: Planets 116, E2(2011).
    [37] A SHAW, R E ARVIDSON, and R BONITZ, et al.Phoenix soil physical properties investigation [J], Journal of Geophysical Research: Planets 114, E12009JE003455(2009).
    [38] 蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789.
    [39] RUESS F, ZACNY K, BRAUN B. Lunar in-situ resource utilization: regolith bags automated filling technology [C]//AIAA SPACE 2008 Conference & Exposition. San Diego, California. 2008.
    [40] TOKLU Y C, ÇERÇEVIK, A E. Space research and extraterrestrial construction industry [C]//20178th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017.
    [41] HOFFMAN S J, ANDREWS A, JOOSTEN B K, et al. A water rich Mars surface mission scenario [C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE. 2017: 1-21.
    [42] 张楠, 王亮, TALALAY P, 等. 极地冰钻关键技术研究进展[J]. 探矿工程(岩土钻掘工程), 2020, 47(2): 1-16.
    [43] RAMKISSOON N K, PEARSON V K, SCHWENZER S P, et al. New simulants for martian regolith: Controlling iron variability [J]. Planetary and Space Science, 2019, 179: 104722. DOI: 10.1016/ j.pss.2019.104722.
    [44] ROME R, ANDERSEN C, DEFORE K, et al. Planetary lego: Designing a construction block from a regolith derived feedstock for in situ robotic manufacturing [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 289-296.
    [45] Foster+Partners. Mars Habitat[EB/OL]. 2015. URL: https://www.fosterandpartners.com/projects/mars-habitat/.
    [46] BIG. Mars Science City[EB/OL]. [2023-09-29]. URL: https://big.dk/#projects-mars.
    [47] B KADING, and J STRAUB, Utilizing in-situ resources and 3D printing structures for a manned Mars mission [J], Acta Astronautica 107, 317326(2015).
    [48] M TROEMNER, E RAMYAR, and J MEEHAN, et al.A 3D-printing centered approach to mars habitat architecture and fabrication [J], Journal of Aerospace Engineering 35, 104021109(2022).
    [49] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(02): 108-113.
    [50] T R ORR, J E BLEACHER, and M R PATRICK, et al.A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts [J], Journal of Volcanology and Geothermal Research 291, 3548(2015).
    [51] WYRICK D, FERRILL D A, MORRIS A P, et al. Distribution, morphology, and origins of Martian pit crater chains [J]. Journal of Geophysical Research: Planets, 2004, 109(E6). DOI: 10.1029/ 2004JE002240.
    [52] H D BEEMER, and D S WORRELLS, Conducting rock mass rating for tunnel construction on Mars [J], Acta Astronautica 139, 176180(2017).
    [53] BOWERSOX, DAVID F. Processes for metal extraction[R]. NASA Technical Reports Server (NTRS), 1997.
    [54] A SCHULTZ, Brittle strength of basaltic rock masses with applications to Venus [J], Journal of Geophysical Research: Planets 98, E61088310895(1993).
    [55] P FENG, X MENG, and J F CHEN, et al.Mechanical properties of structures 3D printed with cementitious powders [J], Construction and Building Materials 93, 486497(2015).
    [56] P FENG, X MENG, and H ZHANG, Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials [J], Composite Structures 134, 331342(2015).
    [57] 程瑜飞. 复杂形态混凝土构件的3D打印建造与设计研究[D]. 北京: 清华大学, 2018.
    [58] G CESARETTI, E DINI, and X DE KESTELIER, et al.Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [J], Acta Astronautica 93, 430450(2014).
    [59] SCOTT A, OZE C, HUGHES M W, et al. Performance of a magnesia silica cement for Martian construction [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 629-636.
    [60] A BARKATT, and M OKUTSU, Obtaining elemental sulfur for Martian sulfur concrete [J], Journal of Chemical Research 46, 2174751982210807(2022).
    [61] 刘释元, 张策, 尹钊, 等. 地外二氧化碳转化利用技术研究现状与展望[J]. 中国空间科学技术, 2022, 42(06): 1-11.
    [62] R N GRUGEL, and H TOUTANJI, Sulfur “concrete” for lunar applications - Sublimation concerns [J], Advances in Space Research 41, 1103112(2008).
    [63] Y ZUO, D ZHANG, and S ZHANG, et al.Effect of vacuum environment on micro morphology and porosity of Lunar soil concrete [J], Journal of Physics: Conference Seriesries. Nanjing, China: MSEE (2022).
    [64] L WAN, R WENDNER, and G CUSATIS, A novel material for in situ construction on Mars: experiments and numerical simulations [J], Construction and Building Materials 120, 222231(2016).
    [65] C BUCHNER, R H PAWELKE, and T SCHLAUF, et al.A new planetary structure fabrication process using phosphoric acid [J], Acta Astronautica 143, 272284(2018).
    [66] ROEDEL H, LEPECH M D, LOFTUS D J. Protein-regolith composites for space construction [C]//Earth and Space 2014. 2014: 291-300.
    [67] ROSA I, LEPECH M D, LOFTUS D J. Multiscale modeling and testing of protein-bound regolith and soils [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 580-590.
    [68] DELGADO A, CORDOVA S, SHAFIROVICH E. Thermite reactions with oxides of iron and silicon during combustion of magnesium with lunar and Martian regolith simulants [J]. Combustion and Flame, 2015, 162(9): 3333-3340.
    [69] RAY C S, REIS S T, SEN S. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants [C]//Space Technology and Applications International Forum (STAIF-2008). American Institute of Physics. 2008: 908-916.
    [70] NASA. NASA-STD-3001, NASA Space Flight Human-System Standard Volume 2: Human Factors, Habitability, and Environment Health [M]. Washington. DC, 2015.
    [71] 匡松松. 充气可展式月球基地结构设计与热防护分析研究[D]. 杭州: 浙江大学, 2014.
    [72] HUGHES S J, WARE J S, DEL CORSO J A, et al. Deployable aeroshell flexible thermal protection system testing [C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Seattle, Washington. 2009: 2926.
    [73] P AI, P FENG, and H LIN, et al.Novel self-anchored CFRP cable system: Concept and anchorage behavior [J], Composite Structures 263, 113736(2021).
    [74] G DING, P FENG, and Y WANG, et al.Novel pre-clamp lap joint for CFRP plates: Design and experimental study [J], Composite Structures 302, 116240(2022).
    [75] L A SODERBLOM, R C ANDERSON, and R E ARVIDSON, et al.Soils of eagle crater and meridiani planum at the opportunity rover landing site [J], Science 306, 570217231726(2004).
    [76] INGHAM J, HAAKONSTAD E. Inflatable airlock[P]. US20120318926A1, 2012.
    [77] 陈为正. 碳纤维布抗滑桩静动力特性研究[D]. 聊城: 聊城大学, 2022.
  • 加载中
计量
  • 文章访问数:  355
  • HTML全文浏览量:  50
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-29
  • 网络出版日期:  2024-02-27

目录

    /

    返回文章
    返回