A Novel Approach for Martian Base Construction Using In-Situ Resources
-
摘要: 火星是太阳系内最接近地球环境的星球,具有非常重要的战略价值与意义。随着“天问一号”一次性完成火星“绕、落、巡”三大任务,火星基地建造便成为推进我国深空探测过程的下一重要目标。通过调研现有文献中火星环境和资源条件,并将其与月球、地球条件进行对比分析,提出了火星建造亟需解决的特有难题。基于调研,适用于火星的建造技术包括挖掘建造、化学气相沉积成型、熔融沉积成型、火壤粘接成型等;提出了一种基于原位资源的火星基地自动化建造方案——中华穹顶,即采用充气气囊、碳纤维骨架、硫磺混凝土外覆层和组合舱门的形式,为火星基地建造提供了一个技术思路。Abstract: As the most similar exoplanet in the solar system, Mars is very important in the perspective of strategic value and significance. With the completion of the three missions of “orbiting, landing and patrolling” of Mars at one time, the Martian base construction has become the next important goal to promote our deep space exploration process. Through the investigation of the existing literature on the environment and resource conditions of Mars, comparing them with those on the moon and the Earth, a series of unique problems to be solved in the construction of Mars are put forward. Based on the investigation of technologies suitable for Mars construction, including excavation construction, chemical vapor deposition forming, fused deposition forming, and Martian regolith bonding forming, etc., a new scheme of automatic construction of Martian base based on in-situ resources is proposed, called “China Dome”, which components include an inflatable bag, carbon fiber skeleton, sulfur concrete cladding and hatches. This provides a new way to build a Martian base.
-
[1] 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10. [2] 刘洋, 吴兴, 刘正豪, 等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评, 2021, 52(04): 416-436. [3] J BLAMONT, A roadmap to cave dwelling on the Moon and Mars [J], Advances in Space Research 54, 1021402149(2014). [4] 卢波. 火星探测的未来规划[J]. 国际太空, 2009(3): 17-21. [5] 程绍驰, 吴水香. “火星科学实验室”主要技术突破分析[J]. 中国航天, 2012(11): 30-34. [6] 王宇虹. 长征五号火箭成功发射天问一号火星探测器[J]. 导弹与航天运载技术, 2020(04): 101+2. [7] 欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(06): 591-601. [8] 刘汉生, 王江, 赵健楠, 等. 典型模拟火星土壤研究进展[J]. 载人航天, 2020, 26(03): 389-402. [9] 刘洋, 刘正豪, 吴兴, 等. 火星的水环境演化[J]. 地质学报, 2021, 95(09): 2725-2741. [10] 肖万博, 王彦宾. “洞察”号火星表面地震探测中的发现[J]. 地球与行星物理论评, 2021, 52(02): 211-226. [11] VERSEUX C, BAQUE M, LEHTO K, et al. Sustainable life support on Mars: the potential roles of cyanobacteria [J]. International Journal of Astrobiology, 2016, 15(1): 65-92. [12] BIEMANN K, RUSHNECK D R, et al. The composition of the atmosphere at the surface of Mars [J]. Journal of Geophysical Research, 1977, 82(28): 4635-4639. [13] S J WEIDENSCHILLING, The distribution of mass in the planetary system and solar nebula [J], Astrophysics and Space Science 51, 1153158(1977). [14] HASSLER D M, ZEITLIN C, WIMMER-SCHWEINGRUBER R F, et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover [J]. Science, 2014, 343(6169). DOI: 10.1126/science.12447. [15] J T SCHOFIELD, J R BARNES, and R HABERLE, et al.The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment [J], Science 278, 534417521758(1997). [16] 史建魁, 刘振兴, 程征伟. 火星探测研究结果分析[J]. 科技导报, 2011, 29(10): 64-70. [17] 孙伟家, 王一博, 魏勇, 等. 火星地震学与内部结构研究[J]. 地球与行星物理论评, 2021, 52(04): 437-449. [18] B KENDA, M DRILLEAU, and R F GARCIA, et al.Subsurface structure at the insight landing site from compliance measurements by seismic and meteorological experiments [J/OL], Journal of Geophysical Research: Planets 125, 6e2020JE006387(2020). [19] ZUBRIN R, WAGNER R. The Case for Mars [M]. 阳曦, 徐蕴芸, 译. 北京: 科学出版社, 2012. [20] 冯鹏, 包查润, 张道博, 等. 基于月面原位资源的月球基地建造技术[J]. 工业建筑, 2021, 51(01): 169-178. [21] J F BELL, M T LEMMON, and T C DUXBURY, et al.Solar eclipses of Phobos and Deimos observed from the surface of Mars [J], Nature 436, 70475557(2005). [22] H CHEN, T SARTON DU JONCHAY, and L HOU, et al.Integrated in-situ resource utilization system design and logistics for Mars exploration [J], Acta Astronautica 170, 8092(2020). [23] 党兆龙, 陈百超. 火星土壤物理力学特性分析[J]. 深空探测学报, 2016, 3(02): 129-133+144. [24] B C CLARK, A K BAIRD, and H J ROSE JR., et al.The Viking X ray fluorescence experiment: Analytical methods and early results [J], Journal of Geophysical Research 82, 2845774594(1977). [25] B C CLARK, A K BAIRD, and R J WELDON, et al.Chemical composition of Martian fines [J], Journal of Geophysical Research: Solid Earth 87, B121005910067(1982). [26] H WANKE, J BRÜCKNER, and G DREIBUS, et al.Chemical composition of rocks and soils at the Pathfinder Site [J], Space Science Reviews 96, 1/4317330(2001). [27] R GELLERT, R RIEDER, and R C ANDERSON, et al.Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray Spectrometer [J], Science 305, 5685829832(2004). [28] R RIEDER, R GELLERT, and R C ANDERSON, et al.Chemistry of rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer [J], Science 305, 568517461749(2004). [29] BLAKE D F, MORRIS R V, KOCUREK G, et al. Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow [J]. Science, 2013, 341(6153): 1239505. DOI: 10.1126/ science.1239505. [30] TAYLOR S R, MCLENNAN S M. Planetary Crusts: Their Composition, Origin and Evolution [M]. UK: Cambridge University Press, 2009. [31] RUDNICK R L, GAO S. Composition of the continental crust [J]. Treatise on geochemistry, 2003, 3: 659. DOI: 10.1016/0016-7037(95)00038-2. [32] WILCOX B, NASIF A, WELCH R. Implications of Martian Rock Distributions on Rover Scaling[R]. NASA Technical Reports Server (NTRS), 1997. [33] H J MOORE, G D CLOW, and R E HUTTON, A summary of Viking sample‐trench analyses for angles of internal friction and cohesions [J], Journal of Geophysical Research: Solid Earth 87, B121004310050(1982). [34] H J MOORE, D B BICKLER, and J A CRISP, et al.Soil‐like deposits observed by Sojourner, the Pathfinder rover [J], Journal of Geophysical Research: Planets 104, E487298746(1999). [35] ROVER TEAM, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner [J], Science 278, 534417651768(1997). [36] R SULLIVAN, R ANDERSON, and J BIESIADECKI, et al.Cohesions, friction angles, and other physical properties of Martian regolith from Mars exploration rover wheel trenches and wheel scuffs [J], Journal of Geophysical Research: Planets 116, E2(2011). [37] A SHAW, R E ARVIDSON, and R BONITZ, et al.Phoenix soil physical properties investigation [J], Journal of Geophysical Research: Planets 114, E12009JE003455(2009). [38] 蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789. [39] RUESS F, ZACNY K, BRAUN B. Lunar in-situ resource utilization: regolith bags automated filling technology [C]//AIAA SPACE 2008 Conference & Exposition. San Diego, California. 2008. [40] TOKLU Y C, ÇERÇEVIK, A E. Space research and extraterrestrial construction industry [C]//20178th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017. [41] HOFFMAN S J, ANDREWS A, JOOSTEN B K, et al. A water rich Mars surface mission scenario [C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE. 2017: 1-21. [42] 张楠, 王亮, TALALAY P, 等. 极地冰钻关键技术研究进展[J]. 探矿工程(岩土钻掘工程), 2020, 47(2): 1-16. [43] RAMKISSOON N K, PEARSON V K, SCHWENZER S P, et al. New simulants for martian regolith: Controlling iron variability [J]. Planetary and Space Science, 2019, 179: 104722. DOI: 10.1016/ j.pss.2019.104722. [44] ROME R, ANDERSEN C, DEFORE K, et al. Planetary lego: Designing a construction block from a regolith derived feedstock for in situ robotic manufacturing [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 289-296. [45] Foster+Partners. Mars Habitat[EB/OL]. 2015. URL: https://www.fosterandpartners.com/projects/mars-habitat/. [46] BIG. Mars Science City[EB/OL]. [2023-09-29]. URL: https://big.dk/#projects-mars. [47] B KADING, and J STRAUB, Utilizing in-situ resources and 3D printing structures for a manned Mars mission [J], Acta Astronautica 107, 317326(2015). [48] M TROEMNER, E RAMYAR, and J MEEHAN, et al.A 3D-printing centered approach to mars habitat architecture and fabrication [J], Journal of Aerospace Engineering 35, 104021109(2022). [49] 于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望[J]. 深空探测学报, 2016, 3(02): 108-113. [50] T R ORR, J E BLEACHER, and M R PATRICK, et al.A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts [J], Journal of Volcanology and Geothermal Research 291, 3548(2015). [51] WYRICK D, FERRILL D A, MORRIS A P, et al. Distribution, morphology, and origins of Martian pit crater chains [J]. Journal of Geophysical Research: Planets, 2004, 109(E6). DOI: 10.1029/ 2004JE002240. [52] H D BEEMER, and D S WORRELLS, Conducting rock mass rating for tunnel construction on Mars [J], Acta Astronautica 139, 176180(2017). [53] BOWERSOX, DAVID F. Processes for metal extraction[R]. NASA Technical Reports Server (NTRS), 1997. [54] A SCHULTZ, Brittle strength of basaltic rock masses with applications to Venus [J], Journal of Geophysical Research: Planets 98, E61088310895(1993). [55] P FENG, X MENG, and J F CHEN, et al.Mechanical properties of structures 3D printed with cementitious powders [J], Construction and Building Materials 93, 486497(2015). [56] P FENG, X MENG, and H ZHANG, Mechanical behavior of FRP sheets reinforced 3D elements printed with cementitious materials [J], Composite Structures 134, 331342(2015). [57] 程瑜飞. 复杂形态混凝土构件的3D打印建造与设计研究[D]. 北京: 清华大学, 2018. [58] G CESARETTI, E DINI, and X DE KESTELIER, et al.Building components for an outpost on the Lunar soil by means of a novel 3D printing technology [J], Acta Astronautica 93, 430450(2014). [59] SCOTT A, OZE C, HUGHES M W, et al. Performance of a magnesia silica cement for Martian construction [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 629-636. [60] A BARKATT, and M OKUTSU, Obtaining elemental sulfur for Martian sulfur concrete [J], Journal of Chemical Research 46, 2174751982210807(2022). [61] 刘释元, 张策, 尹钊, 等. 地外二氧化碳转化利用技术研究现状与展望[J]. 中国空间科学技术, 2022, 42(06): 1-11. [62] R N GRUGEL, and H TOUTANJI, Sulfur “concrete” for lunar applications - Sublimation concerns [J], Advances in Space Research 41, 1103112(2008). [63] Y ZUO, D ZHANG, and S ZHANG, et al.Effect of vacuum environment on micro morphology and porosity of Lunar soil concrete [J], Journal of Physics: Conference Seriesries. Nanjing, China: MSEE (2022). [64] L WAN, R WENDNER, and G CUSATIS, A novel material for in situ construction on Mars: experiments and numerical simulations [J], Construction and Building Materials 120, 222231(2016). [65] C BUCHNER, R H PAWELKE, and T SCHLAUF, et al.A new planetary structure fabrication process using phosphoric acid [J], Acta Astronautica 143, 272284(2018). [66] ROEDEL H, LEPECH M D, LOFTUS D J. Protein-regolith composites for space construction [C]//Earth and Space 2014. 2014: 291-300. [67] ROSA I, LEPECH M D, LOFTUS D J. Multiscale modeling and testing of protein-bound regolith and soils [C]//Earth and Space 2018: Engineering for Extreme Environments. Reston, VA: American Society of Civil Engineers. 2018: 580-590. [68] DELGADO A, CORDOVA S, SHAFIROVICH E. Thermite reactions with oxides of iron and silicon during combustion of magnesium with lunar and Martian regolith simulants [J]. Combustion and Flame, 2015, 162(9): 3333-3340. [69] RAY C S, REIS S T, SEN S. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants [C]//Space Technology and Applications International Forum (STAIF-2008). American Institute of Physics. 2008: 908-916. [70] NASA. NASA-STD-3001, NASA Space Flight Human-System Standard Volume 2: Human Factors, Habitability, and Environment Health [M]. Washington. DC, 2015. [71] 匡松松. 充气可展式月球基地结构设计与热防护分析研究[D]. 杭州: 浙江大学, 2014. [72] HUGHES S J, WARE J S, DEL CORSO J A, et al. Deployable aeroshell flexible thermal protection system testing [C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Seattle, Washington. 2009: 2926. [73] P AI, P FENG, and H LIN, et al.Novel self-anchored CFRP cable system: Concept and anchorage behavior [J], Composite Structures 263, 113736(2021). [74] G DING, P FENG, and Y WANG, et al.Novel pre-clamp lap joint for CFRP plates: Design and experimental study [J], Composite Structures 302, 116240(2022). [75] L A SODERBLOM, R C ANDERSON, and R E ARVIDSON, et al.Soils of eagle crater and meridiani planum at the opportunity rover landing site [J], Science 306, 570217231726(2004). [76] INGHAM J, HAAKONSTAD E. Inflatable airlock[P]. US20120318926A1, 2012. [77] 陈为正. 碳纤维布抗滑桩静动力特性研究[D]. 聊城: 聊城大学, 2022.
点击查看大图
计量
- 文章访问数: 338
- HTML全文浏览量: 48
- PDF下载量: 6
- 被引次数: 0