Mechanical Properties of Inclined Steel-Reinforced Concrete Column Structure of Shenzhen Huangmugang Comprehensive Transportation Hub
-
摘要: 深圳黄木岗综合交通枢纽地下结构采用大直径型钢混凝土斜柱体系,在满足使用要求的同时显著提升了地铁站的建筑美感及换乘舒适度。该斜柱竖向倾斜布置,竖向夹角最大为13°且斜柱位于横纵梁节点外侧并仅与结构横梁相连。为明确型钢混凝土斜柱力学性能,设计并制作了缩尺比为1:8的型钢混凝土斜柱模型试件,并对其进行了静力试验研究,获得了斜柱在轴力、剪力和弯矩共同作用下的破坏过程及力学响应。采用ABAQUS有限元软件对斜柱力学性能进行了数值分析。试验和数值分析结果表明:横梁及腋梁可在两个方向上有效约束型钢混凝土斜柱侧向变形,斜柱承载力可达设计荷载的1.62倍,结构设计安全可靠;荷载达到试件承载力时,梁柱节点平面内及平面外水平位移分别为斜柱长度的1/3 046和1/3 236;斜柱上柱段中部及底部发生压溃破坏,钢筋压屈,腋梁侧面出现少量斜裂缝。Abstract: A large-diameter inclined steel-reinforced concrete (SRC) column system is utilized in the underground structure of the Shenzhen Huangmugang comprehensive transportation hub, enhancing both the architectural aesthetics and the transferring comfort while meeting operational requirements. The SRC columns are vertically inclined and have a maximum inclination angle of 13°, and the columns connected to the horizontal beams in the structure, are located outside the beam-beam joints. To investigate the mechanical Properties of the inclined columns, a specimen on a scale of 1/8 was designed and fabricated, and the failure process and response of the column were determined by static test in combination with axial load, shear force, and bending moment. ABAQUS software was employed to further determine the mechanical properties of the inclined SRC column. The results revealed that the horizontal beams and corbels could effectively restrain the lateral deformation of the inclined columns in both directions. The bearing capacity of the inclined columns was 1.62 times the design load, indicating the design was safe and reliable. When the load reached its peak, the in-plane and out-plane lateral displacement was 1/3 046 and 1/3 236 of the length of the inclined column. The concrete in the middle and bottom zone of the upper column region was crushed significantly and the longitudinal steel bar also buckled, and few cracks were observed at the side surface of the corbels.
-
Key words:
- steel-reinforced concrete /
- inclined column /
- supporting beam /
- mechanical properties /
- static test
-
[1] Z L CHEN, J Y CHEN, and H LIU, et al.Present status and development trends of underground space in Chinese cities: Evaluation and analysis [J], Tunnelling and Underground Space Technology 71, 253270(2018). [2] DONG L, NELSON J D, BEECROF T M, et al. An overview of recent developments in China’s metro systems [J/OL]. Tunnelling and Underground Space Technology, 2021, 111. [2021-05-01] https://doi.org/10.1016/j.tust.2020.103783. [3] 韩宝明, 习喆, 孙亚洁, 等. 2022年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2023, 36: 1-8. [4] 洪开荣, 冯欢欢. 近2年我国隧道及地下工程发展与思考(2019—2020年) [J]. 隧道建设(中英文), 2021, 41: 1259-1280. [5] 付永煜. 将城市功能融入城市综合交通枢纽建设的新思路[J]. 现代城市轨道交通, 2021(增刊): 21-25. [6] 辛志超, 朱旻, 包小华, 等. 城市枢纽与片区融合协同设计方案研究[J]. 地下空间与工程学报, 2023, 19: 22-31. [7] DONG L, BROERE W, CUI J Q. Underground space utilisation and new town development: Experiences, lessons and implications [J/OL]. Tunnelling and Underground Space Technology, 2022, 119.[2021-10-22]https://doi.org/10.1016/j.tust.2021.104204. [8] TANN D, RITTER S, HALE S, et al. From urban underground space (UUS) to sustainable underground urbanism (SUU): Shifting the focus in urban underground scholarship [J/OL]. Land Use Policy, 2021, 109. [2021-10-01]https://doi.org/10.1016/j.landusepol.2021.105650. [9] CUI J, BROERE W, LIN D. Underground space utilisation for urban renewal [J/OL]. Tunnelling and Underground Space Technology, 2021, 108.[2021-02-01]https://doi.org/10.1016/j.tust.2020.103726. [10] 张素梅, 李爱东, 王玉银, 等. 深圳岗厦北地下综合交通枢纽站桥合建大跨度组合结构复杂节点受力性能研究[J]. 建筑结构学报, 2023, 44(2): 1-15. [11] 祝勇. 地铁车站型钢混凝土组合柱施工关键技术[J]. 工程建设与设计, 2022(2): 111-113. [12] 吕彬. 带剪力钉的型钢混凝土斜柱受力性能分析[D]. 济南: 山东大学, 2021. [13] 丁得志. 地下空间巨型型钢混凝土斜柱的受力性能及参数化仿真分析[J]. 市政技术, 2023, 41(2): 38-46, 52. [14] CHEN W F, LUI E M. Structural stability: Theory and implementation [M]. New York: Elsevier, 1987. [15] TRAHAIR N S, BRADFORD M A. The behavior and design of steel Structures [M]. 2nd ed. London: Chapman and Hall, 1991. [16] 陈绍蕃. 钢结构稳定设计的新进展[J]. 建筑钢结构进展, 2004(6): 1-13. [17] 童根树, 施祖元, 李志飚. 计算长度系数的物理意义及对各种钢框架稳定设计方法的评论[J]. 建筑钢结构进展, 2004(6): 1-8. [18] 中华人民共和国住房和城乡建设部. 金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [19] 全国钢标准化技术委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. [20] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
点击查看大图
计量
- 文章访问数: 112
- HTML全文浏览量: 11
- PDF下载量: 8
- 被引次数: 0