A New Reinforcement Technique and Stability Analysis for Large Composite Storage Tank Roofs
-
摘要: 大型储罐罐顶的罐壁薄、跨度大,在外压作用下容易出现失稳问题。以某大型2万t复材储罐典型工程为例,针对其罐顶稳定性提升的需求,提出复材拱加固、复材拱-工字钢-槽钢组合加固、工字钢-槽钢组合加固、三角钢桁架加固罐顶等四种加固方案,并建立有限元模型对加固前后的储罐进行特征值屈曲分析。结果表明,加固前罐顶稳定系数为1.29,远小于GB 150—1998《钢制压力容器》的要求(稳定系数为15)。除复材拱加固外,其余应用钢结构与复材进行组合的加固方案均有较好的效果,加固后罐顶稳定系数均满足GB 150—1998的要求。在此基础上,综合分析了各加固方案的造价及施工工艺,结果表明小截面三角钢桁架加固复材罐顶为最优方案,为大型复材储罐罐顶的加固和优化设计提供技术参考。Abstract: The roof of large storage tank is prone to instability under external pressure due to its thin wall and large span. Taking a large 20 000-ton composite storage tank as an example, in order to improve the stability of the tank roof, four reinforcement schemes were proposed, such as composite arch reinforcement, composite arch-I-beam-channel steel combined reinforcement, I-beam-channel steel combined reinforcement, and triangular steel truss reinforcement. A finite element model was established to perform buckling analysis of the tank roof before and after reinforcement. It was shown that the stability coefficient of the tank roof before reinforcement was 1.29, which was much smaller than the requirements of a stability coefficient of 15 in Steel pressure vessels (GB 150—1998). Except for the composite arch reinforcement, other reinforcement schemes that combined steel structures with composite materials exhibited favorable effects, and the stability coefficient of the tank roof after reinforcement could meet the requirements of GB 150—1998. Based on this, the cost and construction processes of each reinforcement scheme were systematically analyzed. The small cross-sectional triangular steel truss reinforcement scheme was identified as the optimal solution for the composite tank roof, which could provid technical reference for the reinforcement and optimization design of large composite storage tank roofs.
-
Key words:
- composite material /
- large storage tank /
- reinforcement /
- steel truss /
- stability coefficient
-
[1] 许蕴博. 103~104m3立式拱顶储罐结构应力分析与弱顶结构评价[D]. 大庆: 东北石油大学, 2012. [2] 劳瑞卿. 高温热油罐罐顶失效撕裂原因分析及建议[J]. 化学工程与技术, 2019(6): 481-488. [3] 赵静. 大型石油储罐的抗风计算与抗风措施[J]. 石油库与加油站, 2020, 29(4): 1-5, 52. [4] 唐卉, 张福君, 李明. 大型熔盐储罐罐顶非线性屈曲分析[J].锅炉制造, 2018(5): 55-56, 64. [5] 肖桂枝. 高性能石油储罐用钢开发[D]. 沈阳: 东北大学, 2013. [6] B SZTUROMSKI, R KICIŃSKI, and A SZTUROMSKA, et al.Repair of closed fermentation chamber and its influence on strength properties of the tank - case study [J], Advances in Science and Technology Research Journal 16, 697107(2022). [7] 张瑾, 汪云家, 李风, 等. 复合结构罐顶安全性数值模拟及结构优化[J]. 工程塑料应用, 2023, 51(4): 70-77. [8] M KUSANO, T KANAI, and Y ARAO, et al.Degradation behavior and lifetime estimation of fiber reinforced plastics tanks for hydrochloric acid storage [J], Engineering Failure Analysis 79, 971979(2017). [9] 中国复合材料工业协会. 全球玻璃钢储罐市场规模到2028年将超过31亿美元[EB/OL]. [2022-10-12] https://ccia.xin/zhuantibaogao/893.html. [10] 徐书根, 赵延灵, 蒋文春, 等. 带加强筋的储罐罐顶稳定性和强度有限元分析[J]. 化工机械, 2012, 39(4): 475-477. [11] 范虹, 王明富, 张杰. 基于ANSYS的大型立式真空绝热容器外下封头加强结构设计[J]. 化工设备与管道, 2011, 48(3): 4-7. [12] P TARAGHI, H SHOWKATI, and S E FIROUZSALARI, The performance of steel conical shells reinforced with CFRP laminates subjected to uniform external pressure [J], Construction and Building Materials 214, 484496(2019). [13] T G GHAZIJAHANI, and H SHOWKATI, Experiments on conical shell reducers under uniform external pressure [J], Journal of Constructional Steel Research 67, 1015061515(2011). [14] M E BARKEY, M C TURGEON, and T V NARE, Buckling of stiffened thin-walled truncated cones subjected to external pressure [J], Experimental Mechanics 48, 281291(2008). [15] 中华人民共和国国家发展和改革委员会. 耐化学腐蚀现场缠绕玻璃钢大型容器: HG/T 3983—2007[S]. 北京: 化学工业出版社, 2007. [16] ABAQUS lnc. ABAQUS analysis manual [M]. Rhale Island: ABAQUS Inc, 2021. [17] 中国国家标准化管理委员会. 钢制压力容器: GB 150—1998[S]. 北京: 中国标准出版社, 1998.
点击查看大图
计量
- 文章访问数: 135
- HTML全文浏览量: 4
- PDF下载量: 5
- 被引次数: 0