Experimental Research on Mechanical Properties of Reinforced Gypsum Beams
-
摘要: 为研究配筋石膏梁的受力性能及配筋率和配筋形式的影响规律,对7根单筋石膏梁和5根双筋石膏梁进行了静力加载试验。试验结果表明:单筋试件B1~B5和双筋试件B8、B9均发生正截面受弯适筋破坏,单筋试件B6、B7发生超筋破坏;由于石膏实际强度较低导致截面受剪承载力偏低,试件B5、B6和B10发生受弯破坏的同时也发生了受剪破坏,B11、B12则发生受剪斜压破坏;发生正截面受弯适筋破坏的单筋试件,随着受拉钢筋配筋率的增加,试件的峰值承载力有所提高,位移延性系数逐渐减小;受拉纵筋相同时,配置受压纵筋可有效提高试件位移延性;配筋石膏梁基本符合平截面假定;各试件正常使用荷载下最大裂缝宽度和挠度均小于规范GB 50010—2010中规定的限值,配筋石膏梁可以满足正常使用极限状态要求。Abstract: To investigate the mechanical properties of reinforced gypsum beams and analyze the effects of reinforcement ratio and pattern, static loading tests were conducted on seven single-reinforced gypsum beams and five double-reinforced gypsum beams. The test results indicated that both the single-reinforced specimens B1-B5 and the double-reinforced specimens B8 and B9 exhibited bending failure at normal sections as proper reinforced concrete beams, while the single-reinforced specimens B6 and B7 demonstrated bending failure as over-reinforced concrete beams. Due to the low actual strength of gypsum, the shear bearing capacity of the section was relatively low. As a result, specimens B5, B6, and B10 experienced both bending failure and shear failure, and B11 and B12 underwent shear oblique compression failure. The peak bearing capacity of the proper reinforced specimens increased with the increase of the tensile reinforcement ratio, while the displacement ductility coefficient gradually decreased. When the tensile longitudinal reinforcement remained constant, the addition of compressive longitudinal reinforcement could effectively enhance the displacement ductility of the specimens. The reinforced gypsum beam basically conformed to the assumption of a plane section. The maximum crack width and deflection observed in each specimen under service load remained below the specified limit values, indicating that the reinforced gypsum beams satisfactorily met the requirements of the serviceability limit state in Design of Concrete Structures(GB 50010—2010).
-
[1] 李华志, 李韶岗.减水剂对建筑石膏水化硬化的影响[J].新型建筑材料, 2019, 46(7):49-52. [2] DUAN Z, LI J, LI T, et al. Influence of crystal modifier on the preparation of α-hemihydrate gypsum from phosphogypsum[J]. Construction and Building Materials, 2017, 133:323-329. [3] MARCOS L, JOSE F C, MANUEL A. Effect of the expanded perlite dose on the fire performance of gypsum plasters[J]. Construction and Building Materials, 2022, 346, 128494. [4] 谢浪.玄武岩纤维增强磷石膏基复合胶凝材料性能研究[D].贵州:贵州大学, 2022. [5] SILVA D B P, LIMA N B, LIMA V M E, et al. Producing a gypsum-based self-leveling mortar for subfloor modified by polycarboxylate admixture (PCE)[J]. Construction and Building Materials, 2023, 364, 130007. [6] MERCEDES R D, ROCIO S, MARIANO G, et al. Preliminary study of the mechanical behavior of gypsum plastering mortars with ceramic waste additions[J]. Journal of Materials in Civil Engineering, 2022, 34(3), 04021487. [7] 张粤.改性磷石膏在水泥基湿拌砂浆中影响研究[D].贵州:贵州大学, 2022. [8] MOHD A N K, ELLIANA F J, SUKHAIRI A, et al. Study of different composition of gypsum as retarder in ordinary portland cement[J]. Key Engineering Materials, 2022, 6289:633-638. [9] 张华刚, 吴琴, 贾晓飞, 等.现浇磷石膏抗压强度的试验研究[J]. 湖南大学学报:自然科学版, 2016, 43(3):127-134. [10] ZHANG Y C, DAI S B, WENG W L, et al. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum[J]. Journal of Applied Biomaterials & Functional Materials, 2017, 15(1):62-68. [11] 朱大勇, 王君, 金旭, 等.耐水型磷石膏砌块的制备及其防水机理的研究[J].新型建筑材料, 2017, 44(1):68-70, 99. [12] MAGDALENA D, JITKA K, LENKA S, et al. Investigation of environmentally friendly gypsum based composites with improved water resistance[J]. Journal of Cleaner Production, 2022, 370, 133278. [13] 李莹.工业副产石膏蒸压微晶法制备α型高强石膏及机理研究[D].北京:北京科技大学, 2023. [14] 杨林, 张冰, 周杰, 等.磷石膏制备α型高强石膏及其转化过程研究[J].建筑材料学报, 2014, 17(1):147-152. [15] 祁子洋.新型石膏混凝土复合墙板地震损伤研究[D].天津:天津大学, 2016. [16] 姜南, 梁壮.新型石膏混凝土复合外墙板的恢复力模型研究[J].天津大学学报(自然科学与工程技术版), 2018, 51(9):977-987. [17] 罗双.装配式磷石膏-混凝土组合墙板抗震性能研究[D].贵州:贵州大学, 2021. [18] 尹烽宇.现浇磷石膏-混凝土组合墙受压力学性能研究及破坏分析[D].贵州:贵州大学, 2021. [19] 王艺霖, 王顺尧, 李广宁.压型钢板石膏基混凝土组合板的正截面抗弯承载力研究[J].混凝土, 2022(1):156-160. [20] 王艺霖, 王宇, 盛大鹏.压型钢板脱硫石膏基混凝土组合板的抗弯设计方法研究[J].混凝土, 2023(10):171-174, 179. [21] 李博威.UHPC磷石膏夹芯保温剪力墙设计及力学性能研究[D].宜昌:三峡大学, 2023. [22] 种迅, 叶传胜, 蒋庆, 等.配筋石膏单向板的力学性能试验研究[J].新型建筑材料, 2023, 50(5):85-89. [23] 国家市场监督管理总局, 国家标准化管理委员会.金属材料 拉伸试验 第1部分:室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021:14-22. [24] 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012:11-25. [25] 过镇海, 时旭东.钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003. [26] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015. [27] 中华人民共和国住房和城乡建设部.建筑结构可靠性设计统一标准:GB 50068—2018[S]. 北京: 中国建筑工业出版社, 2018. [28] 蔡中民.混凝土结构试验与检测技术[M]. 北京: 机械工业出版社, 2003.
点击查看大图
计量
- 文章访问数: 27
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0