Research on Reduction Coefficients of Water Pressure on Outer Surfaces of Linings of Inclined Shaft Tunnels in Deep Embedment
-
摘要: 为研究衬砌外水压力对煤矿斜井隧道衬砌结构的影响,以穿越含水量大、富水性弱地层的斜井隧道工程为背景,通过分析地下水渗流过程中水力学特性、地层性质等因素引起的水头降低,得出衬砌外水压力折减系数的解析式。同时以该工程为依托,采用有限元模拟的方法评价和验证衬砌外水压力折减系数算式的合理性。在此基础上,探究了注浆圈半径、注浆圈渗透系数、隧道半径等三个工程可控因素对衬砌外水压力折减系数的影响。结果表明:注浆圈厚度的增大会明显降低衬砌外水压力折减系数,而注浆圈渗透系数及隧道半径的增大,会使得衬砌外水压力折减系数显著增大。Abstract: To study the influence of water pressure on outer surfaces of lining structure of inclined shaft tunnels in coal mines, taking an inclined shaft tunnel project across the rich water aquifer with a weak water yield property as the research object, the analytical formula for reduction factors of water pressure on outer surfaces of linings of tunnels was derived by analyzing water head reduction caused by hydromechanical characteristics and stratigraphic properties in processes of groundwater seepage. Simltaneoushy, based on the project, the rationality of the formula for reduction coefficients of water pressure was evaluated and verified by finite element simulations. On the basis, the influence of three engineering controllable factors including radii of grouting rings, permeability coefficients of grouting rings and radii of tunnels on reduction coefficients of water pressure on outer surfaces of linings of tunnels was studied. The results showed that the increase in the thickness of grouting rings would significantly reduce reduction coefficients of water pressure on outer surfaces of linings, while the increase in the permeability coefficients of grouting rings and radii of tunnels would increase the reduction coefficients of water pressure on outer surfaces of linings significantly.
-
Key words:
- inclined shaft tunnel /
- lining structure /
- numerical simulation /
- reduction coefficient
-
[1] 水电规划设计标准化技术委员会. 水工隧洞设计规范: DL/T 5195—2004 [S]. 北京:中国电力出版社, 2004. [2] 王建宇.再谈隧道衬砌水压力[J].现代隧道术,2003(3):5-10. [3] 王建宇.隧道围岩渗流和衬砌水压力荷载[J].铁道建筑技术,2008(2):1-6. [4] 吴金刚,谭忠盛,皇甫明.高水压隧道渗流场分布的复变函数解析解[J].铁道工程学报,2010,27(9):31-34, 68. [5] 王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004(1):8-10. [6] 王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005(1):125-127. [7] 王建秀.深埋隧道外水压力计算中几个问题的探讨(Ⅱ)[J].水文地质工程地质,2003(4):117-118. [8] 王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学报,2002(9):1339-1343. [9] 张有天.隧洞及压力管道设计中的外水压力修正系数[J].水力发电,1996(12):30-34,71. [10] 邓谊明.圆梁山隧道毛坝向斜有关岩溶水文地质问题的浅见[J].铁道工程学报,2002(1):42-46,54. [11] 武赞. 青岛至黄岛海底隧道合理断面结构形式研究[D].北京:北京交通大学,2008. [12] SHIN H S, YOUN D J, CHAE S E, et al. Effective control of pore water pressures on tunnel linings using pin-hole drain method[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2009,24(5):555-561. [13] 董国贤. 水下公路隧道[M]. 北京:人民交通出版社, 1984. [14] 漆江,任旭华,张继勋.考虑外水压力的衬砌与围岩受力分析的解析法[J].三峡大学学报(自然科学版),2015,37(4):25-28,33. [15] 王克忠,倪绍虎,吴慧.深部隧洞裂隙围岩渗透特性及衬砌外水压力变化规律[J].岩石力学与工程学报,2018,37(1):16-176. [16] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J/OL]. Journal of Engineering Mechanics,2001,127(12)[2023-09-11]. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258). [17] 孙钧,章旭昌.软弱断层流变对地下洞室围岩力学效应的黏弹塑性分析[J].岩土工程学报,1987(6):16-26. [18] SHIN J H, ADDENBROOKE T I, POTTS D M. A numerical study of the effect of groundwater movement on long-term tunnel behaviour[J]. Geotechnique, 2002, 52(6): 391-403. [19] 陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用 [M]. 北京:中国水利水电出版社,2010. [20] 李伟,杨丹,李庆.高水压山岭隧道衬砌结构水压力特征研究[J].铁道工程学报,2013(11):57-61,68. [21] Plaxis Inc. Plaxis User’s Manual [M].Toronto: Plaxis Inc,2009. [22] 刘超. 赛达新兴产业园基坑开挖施工对临近建筑影响的分析[D].天津:天津大学,2018. [23] 李然,陈平,张顶立,等.大断面三孔小净距隧道围岩稳定性数值研究及工程实践[J].土木工程学报,2022,55(11):83-95. [24] 黄威,孙云,张建平,等.深埋隧洞高外水压力研究进展[J].三峡大学学报(自然科学版),2023,45(5):1-11. [25] 邓谊明. 圆梁山隧道毛坝向斜有关岩溶水文地质问题的浅见[J].铁道工程学报,2002(1):42-46,54.
点击查看大图
计量
- 文章访问数: 40
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0