Field Vehicle Load Test and Numerical Analysis of GFRP Reinforced Sea Sand Concrete Pavement
-
摘要: 为研究玻璃纤维增强复合材料(GFRP)筋–海砂混凝土路面车载作用下的力学响应特征,将GFRP筋–海砂混凝土路面运用于实际工程。本研究结合项目浇筑一条17 m×98 m的GFRP筋–海砂混凝土路面进行现场车载试验,现场试验表明:改变筋材种类以及单层筋材配筋率对车载作用下路面板应变影响较小。同时,基于现场试验数据建立GFRP筋–海砂混凝土路面有限元模型进行参数敏感性分析,结果表明:有限元模型计算结果与试验数据接近,模型具有较高可靠度,改变GFRP面板筋弹性模量、GFRP纵筋间距、传力杆直径和传力杆弹性模量对GFRP筋–海砂混凝土面板最大拉应力影响较小,GFRP传力杆荷载传递性能弱于钢筋传力杆,实际工程中可通过增大GFRP筋传力杆直径来提高横缝传荷能力。Abstract: In order to study the mechanical response characteristics of GFRP reinforced sea sand concrete pavement under vehicle loads, GFRP reinforced sea sand concrete pavement is applied to engineering practice. In this study, a 17 m×98 m GFRP reinforced sea sand concrete pavement was poured in the field vehicle test, and the field test showed that the change of rebar type and single-layer reinforcement ratio had little effect on the strain of the road panel under vehicle loads. At the same time, based on the field test data, the finite element model of the GFRP reinforced sea sand concrete pavement was established for parameter sensitivity analysis, and the results showed that the calculation results of the finite element model were close to the experimental data, and the model had high reliability, and the changes of the elastic modulus of GFRP panel rebars, the spacing of GFRP longitudinal rebars, the diameter of dowel bars and the elastic modulus of dowel bars had little effect on the maximum tensile stress of the GFRP reinforced sea sand concrete panel, and the load transfer performance of GFRP dowel bars was weaker than that of reforcing steel dowel bars. In actual engineering, the load transfer capacity of transverse joints can be improved by increasing the diameter of GFRP dowel bars.
-
Key words:
- GFRP rebars /
- sea sand concrete /
- concrete pavement /
- experimental study /
- numerical simulation
-
[1] 李师财,于泳.海水海砂混凝土力学性能与耐久性研究综述[J].硅酸盐通报, 2020, 39(12):3743-3752. [2] 关国浩,王学志,贺晶晶.海水海砂混凝土研究进展[J].硅酸盐通报, 2022, 41(5):1483-1493. [3] 侯卫星,秦磊,郭盼盼,等.海水-海砂混凝土研究进展[J].济南大学学报(自然科学版), 2024, 38(2):184-193. [4] 周永祥,关青锋,冷发光,等.海砂中有害离子的释出行为[J].工业建筑, 2021, 51(5):168-172. [5] 李薛忠,吴庆,王刚,等.海水海砂混凝土中钢筋锈蚀的电化学特征[J].混凝土, 2020(7):20-24. [6] 李晃.海水海砂超低水灰比水泥基材料的凝结硬化及钢筋腐蚀特性[D].长沙:湖南大学, 2023. [7] GUO M, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234, 117339. [8] 罗小勇,唐谢兴,匡亚川,等.腐蚀环境下FRP锚杆耐久性能试验研究[J].铁道科学与工程学报, 2015, 12(6):1341-1347. [9] 罗圆月. BFRP筋连续配筋复合式路面结构分析及使用寿命探索[D].杭州:浙江大学, 2014. [10] 李青松.玄武岩纤维筋连续配筋混凝土路面结构力学分析[D].大连:大连理工大学, 2021. [11] 石媛.玻璃纤维传力杆力学性能研究及优化设计[D].广州:华南理工大学, 2019. [12] HOU Y, LI Q H, ZHANG C, et al. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis[J]. Engineering, 2020, 7(6):845-856. [13] 张权,张庆宇,王志斌,等.基于光纤布拉格光栅传感器的永久路面结构响应监测研究[J].传感器与微系统, 2021, 40(11):76-79, 90. [14] 刘晓敏.复合物加铺层的三维有限元分析[J].工业建筑, 2009, 39(增刊1):970-974. [15] SALLES L S D,LEV K, TADEU J B. Structural analysis of transverse cracks in short continuously reinforced concrete pavements[J]. International Journal of Pavement Engineering, 2020, 21(14):1853-1863. [16] 中华人民共和国交通运输部.公路水泥混凝土路面设计规范:JTG D40-2011[S].北京:人民交通出版社, 2011.
点击查看大图
计量
- 文章访问数: 34
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0