Research on Crack Propagation Behavior of UHPC-NC Interface Under Stress Wave
-
摘要: 对于超高性能混凝土(UHPC)叠浇普通混凝土(NC)的叠合结构,UHPC和NC良好的界面性能是实现二者共同工作的基础。针对应力波作用下UHPC和NC界面裂纹扩展行为开展试验和理论研究,提出了UHPC-NC直切槽半圆盘弯曲构型,并采用分离式霍普金森压杆系统对双材料半圆盘进行了冲击试验,考察了不同强度UHPC与NC界面冲击性能的差异。基于有限元方法,结合裂纹扩展计测试结果,计算了双材料直切槽半圆盘弯曲(BNSCB)试件界面裂纹尖端复应力强度因子。研究结果表明:1)应力波作用下BNSCB试件界面裂纹往往会沿骨料与水泥基体界面扩展;2)BNSCB试件的界面裂纹扩展的最大速度都不会超过UHPC的瑞利波波速;3)BNSCB试件裂纹尖端的参数K2远小于K1,且K1在裂纹起裂中起主导作用;4)CSIF中参数K2与UHPC强度等级之间并没有明显的规律。
-
关键词:
- UHPC-NC界面 /
- 双材料直切槽半圆盘弯曲试件 /
- 霍普金森冲击试验 /
- 复应力强度因子 /
- 界面断裂
Abstract: For the ultra-high performance concrete (UHPC) overlaying normal concrete (NC) structures, the reliable interface performance between UHPC and NC is the foundation for achieving their good co-work behavior. The paper focused on the experimental and theoretical research on the crack propagation at the interface of these UHPC-NC configurations under stress waves. A bi-material notched semi-circle bent (BNSCB) configuration was proposed, and the impact tests were conducted on the BNSCB specimens using a split Hopkinson pressure bar system (SHPB), examining the differences in the interfacial impact performance between UHPC with different strengths and NC. Based on the finite element method and crack propagation gauge, the complex stress intensity factor (CSIF) at the crack tip of the interface of BNSCB specimen was calculated. The results showed that: 1) under stress wave action, interface cracks in the BNSCB specimens tended to propagate along the aggregate-cement matrix interface; 2) the maximum velocity of interface crack propagation in the BNSCB specimen did not exceed the Rayleigh wave velocity of UHPC; 3) the parameter K2 at the crack tip of the BNSCB specimen was much smaller than K1, and the parameter K1 played a dominant role in crack initiation; 4) there was no obvious relations between the parameter K2 in CSIF and UHPC strength grades. -
[1] BRVHWILER E, DENARIE E. Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete[J]. Structural Engineering International, 2013, 23: 450-457. [2] PREM P R, MURTHY A R, RAMESH G, et al. Flexural behaviour of damaged RC beams strengthened with ultra high performance concrete[J]. Indian Concrete Journal, 2015, 89(1): 60-68. [3] SAFDAR M, MATSUMOTO T, KAKUMA K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157: 448-460. [4] PASCHALIS S A, LAMPROPOULOS A P, OURANIA T. Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members[J]. Construction and Building Materials, 2018, 186: 351-366. [5] 许建明, 陈勇, 刘骁繁, 等. UHPC-NC叠层梁界面黏结性能的试验研究与数值模拟[J]. 建筑科学与工程学报, 2021, 38(4):44-56. [6] 贾方方, 贺奎, 王万金, 等. 活性粉末混凝土与普通混凝土黏结劈拉性能[J]. 铁道学报, 2016, 38(3):127-132. [7] HUSSEIN L, AMLEH L. Structural behavior of ultra-high performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members[J]. Construction and Building Materials, 2015, 93: 1105-1116. [8] 李涛, 王爽倩, 郑七振, 等. UHPC-NC结合面粘结性能的研究进展[J]. 新型建筑材料, 2022, 49(11):36-41. [9] 张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7):81-89. [10] 杨俊, 周建庭, 张中亚, 等. UHPC-NC键槽界面抗剪性能研究[J]. 中国公路学报, 2021, 34(8):132-144. [11] 严鹏, 张晨, 高启栋, 等. 不同损伤程度下岩石力学参数变化的声波测试[J]. 岩土力学, 2015, 36(12):3425-3432. [12] ERINGEN A C, SUHUBI E S, CHAO C C. Elastodynamics vol II linear theory[J].Journal of Applied Mechanics, 1978, 45(1):229. [13] 范天佑. 断裂动力学原理与应用[M]. 北京:北京理工大学出版社, 2006. [14] FELT E J. Resurfacing and patching concrete pavements with bonded concrete[J]. Highway Research Board Proceedings, 1956, 35: 444-469. [15] 田稳苓, 赵志方, 赵国藩, 等. 新老混凝土的粘结机理和测试方法研究综述[J]. 河北理工学院学报, 1998(1):84-94. [16] HAO Q, BINGLUN C, FEI W, et al. Investigating dynamic fracture in marble-mortar interface under impact loading[J]. Construction and Building Materials, 2022, 336, 127548. [17] HAO Q, FEI W, ZHEMING Z, et al. Study on dynamic fracture behaviour and fracture toughness in rock-mortar interface under impact load[J]. Composite Structures, 2021, 271, 114174. [18] 许金泉. 界面力学[M]. 北京:科学出版社, 2006. [19] 贾普荣, 张元冲. 双材料界面裂纹应力强度因子计算[J]. 机械科学与技术, 2001, 20(9):15-17, 34.
点击查看大图
计量
- 文章访问数: 22
- HTML全文浏览量: 9
- PDF下载量: 1
- 被引次数: 0