Predictions for Carbonation Depth of Marine Concrete Under Different Temperature and Humidity Environments Based on Levenberg-Marquart Algorithm
-
摘要: 对不同温湿度条件下的12组海工混凝土进行了快速碳化试验,试验结果表明环境温湿度对海工混凝土抗碳化性能均有显著影响;随着环境湿度增加,海工混凝土碳化深度呈现先增大后减小的趋势,两者之间呈抛物线关系,且当相对湿度很低或很高时,海工混凝土碳化速度非常缓慢;而随着环境温度增加,海工混凝土碳化速度加快,两者呈指数函数关系。此外,基于试验与理论分析,引入温湿度影响系数对已有碳化深度数学模型改进,并利用Levenberg-Marquart算法对试验数据进行非线性曲面拟合,得到了改进的海工混凝土碳化深度预测模型,该模型可以较好地预测海工混凝土在不同温湿度条件下的碳化深度。Abstract: The rapid carbonation experiment of 12 groups of marine concrete was carried out under different temperature and relative humidity conditions. The experimental results showed that temperature and relative humidity had a significant impact on carbonation resistance of marine concrete. With the increase of relative humidity, the carbonation depth of marine concrete was characterized by an initial increase and then decreased, showing a parabolic relation. Moreover, when the relative humidity was very low or very high, the carbonation rate of marine concrete was infinitely slow. While the carbonation rate of marine concrete was accelerated with the increase of temperature, the relation between carbonation depth and temperature was an exponential function. In addition, based on experimental and theoretical analysis, the temperature and humidity influence coefficients were introduced to improve the existing mathematical model of carbonation depth, and by using the Levenberg-Marquart algorithm to fit a nonlinear surface to the experimental data, a prediction model of the carbonation depth of marine concrete was constructed. This model could predict the carbonation depth of marine concrete under different temperature and humidity conditions.
-
Key words:
- marine concrete /
- carbonation depth /
- relative humidity /
- temperature /
- carbonation model
-
[1] QU F, LI W, DONG W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35, 102074. [2] 李姗姗. 水泥石碳化性能的影响因素及其机理研究[D]. 重庆:重庆大学, 2014. [3] ZHANG M, DU LIN, LI Z, et al. Durability of marine concrete doped with nanoparticles under joint action of Cl-erosion and carbonation[J]. Case Studies in Construction Materials, 2023, 18, e01982. [4] 张铖, 王玲, 姚燕, 等. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7):174-177. [5] 钱文勋, 陈迅捷, 蔡跃波, 等. 应力和氯盐环境下海工混凝土的碳化性能[J]. 混凝土与水泥制品, 2018(5):1-5. [6] DHEILLY R M, TUDO J, SEBAIBI Y, et al. Influence of storage conditions on the carbonation of powdered Ca(OH)2[J]. Construction and Building Materials, 2002, 16(3):155-161. [7] 张旭辉, 刘博文, 杨玲, 等. 不同温度和强度影响下混凝土碳化性能试验研究[J]. 建筑结构, 2020, 50(24):110-115. [8] ELSALAMAWY M, MOHAMED A R, KAMAL E M. The role of relative humidity and cement type on carbonation resistance of concrete[J]. Alexandria Engineering Journal, 2019, 58(4):1257-1264. [9] 蒋清野, 王洪深, 路新瀛. 混凝土碳化数据库与混凝土碳化分析[R].北京:清华大学, 1997. [10] LIU P, YU Z, CHEN Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment[J]. Cement and Concrete Composites, 2020, 114, 103736. [11] 阿列克谢耶夫. 钢筋混凝土结构中钢筋腐蚀与保护[M]. 吴新祖, 黄可信, 译. 北京: 中国建筑工业出版社, 1983. [12] PAPADAKIS V G, VAYENAS C G, FARDIS M N. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal, 1991, 88(4):363-373. [13] 朱安民. 混凝土碳化与钢筋混凝土耐久性[J]. 混凝土, 1992(6):18-22. [14] 牛荻涛, 张宾强, 刘俊, 等. 自然暴露环境下混凝土部分碳化区长度预测模型[J]. 工业建筑, 2022, 52(4):146-151. [15] 徐飞, 张凯, 陈正, 等. 高性能混凝土碳化试验及人工神经网络碳化深度预测模型[J]. 混凝土, 2022(5):57-60. [16] 张誉, 蒋利学. 基于碳化机理的混凝土碳化深度实用数学模型[J]. 工业建筑, 1998(1):16-19. [17] 王传坤. 混凝土氯离子侵蚀和碳化试验标准化研究[D]. 杭州:浙江大学, 2010. [18] XU Z, ZHANG Z, HUANG J, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: A review[J]. Construction and Building Materials, 2022, 346, 128399. [19] YOON I, COPUROGLU O, PARK K. Effect of global climatic change on carbonation progress of concrete[J]. Atmospheric Environment, 2007, 41(34):7274-7285. [20] LOURAKIS, MANOLIS I A. A brief description of the levenberg-marquardt algorithm implemened by levmar[J]. Foundation of Research and Technology, 2005, 4(1):1-6. [21] 张海燕. 混凝土碳化深度的试验研究及其数学模型建立[D]. 杨凌:西北农林科技大学, 2006. [22] 李果, 袁迎曙, 耿欧. 气候条件对混凝土碳化速度的影响[J]. 混凝土, 2004(11):49-51.
点击查看大图
计量
- 文章访问数: 34
- HTML全文浏览量: 1
- PDF下载量: 2
- 被引次数: 0