Research on Static Performance of an Aircraft Hangar Grid Roof Under Different Supporting Conditions
-
摘要: 为探讨不同支承条件对机库建筑特有的三边支承网架屋盖静力性能的影响,系统分析了某机库网架屋盖在铰支承模型(模型1)、弹性支承模型(模型2)和整体分析模型(模型3)中的竖向位移、杆件静内力、支座节点反力和水平位移。结果表明:模型1的节点位移、杆件内力和支座反力与另外2种模型相比离散程度较高;屋盖上弦杆的静内力普遍较大,下弦杆次之,腹杆的静内力较小;模型2和模型3中相应位置的竖向节点位移、杆件静内力和x、y向节点反力的数值和趋势均很接近;实际工作中模型3的水平刚度大于模型2,两者在靠近开口边的区域y向刚度差距较大;按铰支支承方法对该机库屋盖结构进行静力设计存在安全隐患,弹性支承简化方法的实用性较好。Abstract: In order to explore the influence of different supporting conditions on the static performance of the three-sided supporting grid roof unique to hangar buildings, the vertical displacement, static internal force of members, reaction force of bearing joints, and horizontal displacement were systematically analyzed for an aircraft hangar grid roof under three models: a hinged support model (Model 1), an elastic support model (Model 2), and an overall analysis model (Model 3). The results showed that, compared with the other two models, the nodal displacements, member internal forces, and bearing reaction forces in Model 1 were more discrete. The static internal forces in the upper chords of the roof were generally large, followed by those in the lower chords, while the web members exhibited smaller static internal forces. The numerical values and trends of vertical nodal displacements, static internal forces of members, and nodal reaction forces in the X and Y directions at corresponding positions of Model 2 and Model 3 were very close. In practice, the horizontal stiffness of Model 3 was greater than that of Model 2, with a significant difference in Y-direction stiffness near the opening edge. The hinged support method for the static design of the hangar roof structure posed safety risks, whereas the simplified method for elastic supports exhibited better practicality.
-
Key words:
- hangar roof /
- grid structure /
- integral structural analysis /
- collaborative work
-
[1] 董石麟. 中国空间结构的发展与展望[J]. 建筑结构学报,2010,31(6):38-51. [2] 张微敬,钱稼茹,沈顺高,等. 北京A380机库采用粘滞阻尼器的减振控制分析[J]. 建筑结构学报,2009,30(2):1-7. [3] 朱丹,裴永忠,徐瑞,等. 北京A380机库大跨度结构设计研究[J]. 土木工程学报,2008(2):1-8. [4] 董石麟,李元齐. 三峡水电站左岸厂房上部网架结构整体分析[J]. 空间结构,2000(4):3-10. [5] 徐庆阳,李爱群,张洁,等. 大跨维修机库整体模型的地震响应研究[J]. 工程抗震与加固改造,2012,34(5):13-19. [6] 孙梦涵,范峰,支旭东,等. 考虑下部柱支承四角锥网架结构动力响应分析[J]. 土木工程学报,2014,47(12):9-15. [7] 万翔,尹志伟,王健. 某局部三层网架与下部支承结构整体工作分析[J]. 空间结构,2015,21(3):49-53. [8] 赵永全,任玉贺,任源. 大跨度网架与下部支承结构协同作用分析[J]. 建筑结构,2014,44(23):49-53. [9] 杨琴,邓华,李骁然. 中小跨度网架结构的弹塑性地震响应分析[J]. 空间结构,2016,22(3):3-10,84. [10] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [11] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. [12] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7—2010[S]. 北京:中国建筑工业出版社,2010. -
点击查看大图
计量
- 文章访问数: 24
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: