Research on Two-Stage Damage Identification of Steel Frame Based on CNN and CMCM
-
摘要: 在结构损伤识别领域中,交叉模型交叉模态方法(CMCM)在求解含噪声的损伤识别问题时,受到系数矩阵不稳定的影响,往往导致损伤识别结果的精度下降。为了解决这一问题,提出了一种两阶段的损伤识别方法,旨在减少CMCM方法系数矩阵的冗余方程,提高CMCM方法的计算性能和噪声鲁棒性。首先,在第一阶段,通过卷积神经网络(CNN)进行结构损伤定位,以消除CMCM方法系数矩阵的冗余方程。其次,在第二阶段,求解已缩减的CMCM系数矩阵方程,得到更准确的损伤识别结果。通过数值和试验研究,验证了所提出的两阶段损伤识别方法的有效性,与传统的CMCM方法相比,所提方法在求解含噪声的损伤识别问题时,显著提高了损伤识别精度。Abstract: In the field of structural damage identification, the Cross Model Cross Mode (CMCM) Method is constrained by the rank deficiency of the coefficient matrix when solving noise-inclusive damage identification problems, leading to a decrease in the accuracy of damage identification results. To address this issue, this study proposes a two-stage damage identification method aimed at reducing the redundant equations in the CMCM method’s coefficient matrix, thereby enhancing the computational performance and noise robustness of the CMCM method. In the first stage, a Convolutional Neural Network (CNN) is employed for structural damage localization to eliminate the redundant equations in the coefficient matrix of the CMCM method. Subsequently, in the second stage, the reduced CMCM coefficient matrix equation is solved to obtain more accurate damage identification results. The effectiveness of the proposed two-stage damage identification method is validated through numerical and experimental studies. Compared with the traditional CMCM method, the method proposed in this paper significantly improves the accuracy of damage identification in solving noise-inclusive damage identification problems, demonstrating its superior performance.
-
Key words:
- Structural damage identification /
- CMCM /
- CNN /
- a two-stage method
-
[1] 周奎, 王琦, 刘卫东, 等. 土木工程结构健康监测的研究进展综述[J]. 工业建筑, 2009, 39(3): 96-102. [2] M GATTI, Structural health monitoring of an operational bridge: A case study [J], Engineering Structures 195, 200209(2019). [3] 温利明, 黄奕辉. 神经网络用于结构损伤识别的几个关键问题研究[J]. 工业建筑, 2002, 32(8): 39-40, 49. [4] 顾箭峰, 向春燕, 陶甫先等. 基于深度学习和IHPO的桥梁结构模型修正方法[J]. 广西大学学报(自然科学版), 2022, 47(05): 1147-1159. [5] 翁顺, 朱宏平. 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38(3): 1-16. [6] 雷勇志, 黄民水, 顾箭峰, 等. 环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别[J]. 计算力学学报, 2022, 39(2): 170-177. [7] S L J HU, H LI, and S WANG, Cross-model cross-mode method for model updating [J], Mechanical Systems and Signal Processing 21, 416901703(2007). [8] H LI, J WANG, and S L JAMES HU, Using incomplete modal data for damage detection in offshore jacket structures [J], Ocean Engineering 35, 17-1817931799(2008). [9] 贾辉. 基于改进交叉模型交叉模态法的损伤识别研究[D]. 大连: 大连理工大学, 2011. [10] 占超, 李东升, 任亮, 等. 基于改进交叉模型交叉模态法的局部损伤识别方法[J]. 振动与冲击, 2015, 34(7): 127-133. [11] 王炎, 陈辉, 黄斌, 等. 利用改进交叉模型交叉模态的随机模型修正方法[J]. 振动工程学报, 2023, 36(2): 498-506. [12] CONG S, HU S L J, LI H J. FRF-based pole-zero method for finite element model updating [J/OL]. Mechanical Systems and Signal Processing, 2022, 177[2022-05-05]. https://doi.org/10.1016/j.ymssp.2022.109206. [13] XU M, WANG S, JIANG Y. Structural damage identification by a cross modal energy sensitivity based mode subset selection strategy [J/OL]. Marine Structures, 2021, 77[2021-02-24]. https://doi.org/10.1016/j.marstruc.2021.102968. [14] K LIU, R J YAN, and C GUEDES SOARES, An improved model updating technique based on modal data [J], Ocean Engineering 154, 277287(2018). [15] LE C Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [16] X Q ZHOU, Y XIA, and S WENG, L1, Structural Health Monitoring 14, 6571582(2015). [17] TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems [M]. Preston: Winston Press, 1977. [18] E A JOHNSON, H F LAM, and L S KATAFYGIOTIS, et al.Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data [J], Journal of engineering mechanics 130, 1315(2004). [19] OMENZETTER P, LAUTOUR O R D. Detection of Seismic Damage in Buildings Using Structural Responses: UNI/535[R]. Wellington: Earthquake Commission of New Zealand, 2008.
点击查看大图
计量
- 文章访问数: 145
- HTML全文浏览量: 6
- PDF下载量: 7
- 被引次数: 0