Research on Bending Performance of Connection Joints of Concrete-Filled Double-Skin Steel Tube Members with Through Flange Stiffeners
-
摘要: 提出了一种法兰加劲肋贯穿的中空夹层钢管混凝土连接节点。该节点在保证节点强度和刚度的同时,可有效降低施工风险。对足尺节点试件进行纯弯试验研究,分析了其破坏形态、抗弯承载力以及中和轴位置。采用有限元软件ABAQUS对试件进行数值模拟分析。结合试验和数值模拟结果,分析了法兰加劲肋贯穿的中空夹层钢管混凝土连接节点应力发展过程和螺栓受力情况。对法兰板厚度、贯穿加劲肋数量、加劲肋高度以及螺栓规格对节点受弯性能的影响规律进行了参数分析,建议了各参数的取值范围。最后,结合法兰加劲肋贯穿的中空夹层钢管混凝土连接节点受弯力学特征,提出法兰节点的设计方法。Abstract: A connection joint of concrete-filled double-skin steel tube (CFDST) with through flange stiffeners has been proposed, which effectively reduces construction risks while ensuring the strength and stiffness of the joints. Full-scale specimens were subjected to pure bending tests to investigate their failure modes, bending capacity, and neutral axis position. The finite element software ABAQUS was employed for numerical simulation analysis of the specimens. Combining experimental and numerical simulation results, the stress development process in joints of CFDST with through flange and the load on the bolts were analyzed. The influence of flange thickness, the number of through-stiffeners, stiffener height, and bolt specifications on the bending performance of the joint was analyzed, and recommended ranges for each parameter were suggested. Finally, considering the bending mechanical characteristics of joints of CFDST with through flange stiffeners, a design method for joints was proposed.
-
[1] 杨建平, 李正, 程永峰, 等. 架空输电线路钢管塔结构[M]. 北京: 中国电力出版社, 2011. [2] WILLIBALD S, PACKER J A, PUTHLI R S. Design recommendations for bolted rectangular HSS flange-plate connections in axial tension[J]. Engineering Journal, 2003, 40(1): 15-24. [3] 苟兴文, 季小莲, 何文汇, 等. 轴向拉力作用下圆钢管法兰连接节点承载性能的试验研究[J]. 钢结构, 2010, 25(9): 24-29. [4] 吴静. 高强度柔性带颈锻造法兰的应用研究[J]. 建筑结构, 2013, 43(8): 36-39. [5] 吴静, 吴国强, 李清华. 输电杆塔柔性带颈法兰设计[J]. 工业建筑, 2016, 46(8): 28-33. [6] 秦力, 李成铖, 张春蕊.新型锻造法兰抗弯承载性能的有限元分析[J]. 工业建筑, 2014, 44(增刊1): 454-458. [7] ANDREJ M, GINTAS S, ANTANAS S, et al. Plastic capacity of bolted RHS flange-plate joints under axial tension[J]. Engineering Structures and Technologies, 2016, 8(3): 85-93. [8] 刘海锋, 朱彬荣. 输电塔钢管混凝土内外刚性法兰偏拉承载力试验研究[J]. 电气时代, 2015, 11(7): 65-67. [9] 陈哲, 邢月龙, 郭勇, 等. 中空夹层钢管混凝土刚性双层法兰受弯性能试验研究[J]. 钢结构, 2018, 30(7): 6-12. [10] 王文达, 易练波, 范家浩. 中空夹层圆钢管混凝土构件内外法兰连接受弯性能分析[J]. 建筑科学与工程学报, 2020, 37(4): 42-51. [11] 中国国家标准化管理委员会.钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975—2018[S]. 北京: 中国标准出版社, 2018. [12] 中华人民共和国国家质量监督检验检疫总局.金属材料 拉伸试验 第1部分: 室温试验方法:GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021. [13] 中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. [14] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京: 科学出版社, 2016. [15] 刘鹏飞. 加劲薄壁钢管混凝土短柱轴压与偏压性能研究[D]. 重庆: 重庆大学, 2019. [16] 张田. 典型混凝土模型在单调和循环荷载下数值模拟应用研究[D]. 昆明: 昆明理工大学, 2020. [17] 中华人民共和国住房和城乡建设部.高耸结构设计标准:GB 50135—2019[S]. 北京: 中国计划出版社, 2019. [18] 中国电力企业联合会.输电线路中空夹层钢管混凝土杆塔技术规范:T/CEC 185—2018[S]. 北京: 中国电力出版社, 2018. [19] 国家能源局.架空输电线路钢管塔设计技术规定:DL/T 5254—2010[S]. 北京: 中国电力出版社, 2010.
点击查看大图
计量
- 文章访问数: 77
- HTML全文浏览量: 6
- PDF下载量: 1
- 被引次数: 0