| [1] |
王元清,王中兴,胡晓光,等. 7A04高强铝合金L形截面柱轴压整体稳定性能试验研究[J]. 建筑结构学报,2016,37(6):174-182.
|
| [2] |
LIU H,DING Y,CHEN Z. Static stability behavior of aluminum alloy single-layer spherical latticed shell structure with Temcor joints[J]. Thin-Walled Structures,2017,120:355-365.
|
| [3] |
XIE J,CUI N,YAN J,et al. Experimental study on prestress losses of post‐tensioned concrete members at ultra-low temperatures[J]. Structural Concrete,2019,20(6):1828-1841.
|
| [4] |
MALJAARS J,SOETENS F,KATGERMAN L. Constitutive model for aluminum alloys exposed to fire conditions[J]. Metallurgical and Materials Transactions A,2008,39(4):778-789.
|
| [5] |
AFAGHI K A,KANDARE E,FEIH S,et al. Finite element modelling of tensile deformation and failure of aluminium plate exposed to fire[J]. Computational Materials Science,2014,95:242-249.
|
| [6] |
SU M N,YOUNG B. Material properties of normal and high strength aluminium alloys at elevated temperatures[J]. Thin-Walled Structures,2019,137(4):463-471.
|
| [7] |
CHEN Z H,LU J,LIU H B,et al. Experimental investigation on the post-fire mechanical properties of structural aluminum alloys 6061-T6 and 7075-T73[J]. Thin-Walled Structures,2016,106(9):187-200.
|
| [8] |
FAELLA C,MAZZOLANI F M. Local buckling of aluminum members:testing and classification[J]. Journal of Structural Engineering,2000,126(3):353-360.
|
| [9] |
ZHU J H,YOUNG B. Aluminum alloy tubular columns-Part I:Finite element modeling and test verification[J]. Thin-Walled Structures,2006,44(9):961-968.
|
| [10] |
ZHU J H,YOUNG B. Tests and design of aluminum alloy compression members[J]. Journal of Structural Engineering,2006,132(7):1096-1107.
|
| [11] |
BRA B,YU G A,ZL A. Study on the stability behavior of 7A04-T6 aluminum alloy square and rectangular hollow section columns under axial compression[J]. Journal of Building Engineering,2022,45. doi: 10.1016/j.jobe.2021.103652.
|
| [12] |
BRA B,YZ A,SONG Z A,et al. Experiment and numerical investigation on the buckling behavior of 7A04-T6 aluminum alloy columns under eccentric load[J]. Journal of Building Engineering,2022,45. doi: 10.1016/j.jobe.2021.103625.
|
| [13] |
SU M N,YOUNG B,GARDNER L. Testing and design of aluminum alloy cross sections in compression[J]. Journal of Structural Engineering,2014,140(9):758-782.
|
| [14] |
MAZZOLANI F M,PILUSO V,RIZZANO G. Local Buckling of Aluminum Alloy Angles under Uniform Compression[J]. Journal of Structural Engineering,2011,137(2):173-184.
|
| [15] |
WANG Y Q,WANG Z X,HU X G,et al. Experimental study and parametric analysis on the stability behavior of 7A04 high-strength aluminum alloy angle columns under axial compression[J]. Thin-Walled Structures,2016,108(11):305-320.
|
| [16] |
WANG Z,WANG Y,XIANG Y,et al. Experimental and numerical study of fixed-ended high-strength aluminum alloy angle-section columns[J]. Journal of Structural Engineering,2020,146(10),4020206.
|
| [17] |
YUAN H X,WANG Y Q,CHANG T,et al. Local buckling and postbuckling strength of extruded aluminium alloy stub columns with slender I-sections[J]. Thin-Walled Structures,2015,90(5):140-149.
|
| [18] |
WANG Z X,WANG Y Q,SOJEONG J,et al. Experimental investigation and parametric analysis on overall buckling behavior of large-section aluminum alloy columns under axial compression[J]. Thin-Walled Structures,2018,122(1):585-596.
|
| [19] |
SUZUKI J I,OHMIYA Y,WAKAMATSU T,et al. Evaluation of fire resistance of aluminum alloy members[J]. Fire Science & Technology,2005,24(4):237-255.
|
| [20] |
MALJAARS J,SOETENS F,SNIJDER H H. Local buckling of aluminium structures exposed to fire. part 1:tests[J]. Thin-Walled Structures,2009,47(11):1404-1417.
|
| [21] |
FOGLE E J,LATTIMER B Y,FEIH S,et al. Compression load failure of aluminum plates due to fire[J]. Engineering Structures,2012,34(1):155-162.
|
| [22] |
LIU M,CHANG Y,WANG P,et al. Buckling behaviors of thin-walled aluminum alloy column with irregular-shaped cross section under axial compression in a fire[J]. Thin-Walled Structures,2016,98(Jan.Pt.A):230-243.
|
| [23] |
MA H,NI P,HOU Q,et al. Stability of 6082-T6 aluminum alloy columns under axial forces at high temperatures[J]. Thin-Walled Structures,2020,157. DOI: 10.1016/j.tws.2020.107083.
|
| [24] |
KAUFMAN G J. Properties of aluminum alloys:tensile,creep,and fatigue data at high and low temperatures[J]. Rivista Italiana della Saldatura,2000,52(3),373.
|
| [25] |
SCHNEIDER R,HEINE B,GRANT R J,et al. Mechanical behaviour of aircraft relevant aluminium wrought alloys at low temperatures[J]. Journal of Materials Design & Applications,2013,229(L2):126-136.
|
| [26] |
GRUBER B,WEISSENSTEINER I,KREMMER T,et al. Mechanism of low temperature deformation in aluminium alloys[J]. Materials Science & Engineering,A. Structural Materials:Properties,Microstructure and Processing,2020:795. doi: 10.1016/j.msea.2020.139935.
|
| [27] |
PARK W S,CHUN M S,HAN M S,et al. Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures:Part I-Experimental investigations[J]. Materials Science & Engineering,A. Structural Materials:Properties,Microstructure and Processing,2011,528(18):5790-5803.
|
| [28] |
WESTERMANN I,HOPPERSTAD O S,LANGSETH M. Mechanical behaviour of an AA6082 aluminium alloy at low temperatures[J]. Materials Forum,2014,794-796:532-537.
|
| [29] |
SENKOV O N,BHAT R B,SENKOVA S V. High strength aluminum alloys for cryogenic applications[C]// Metallic Materials with High Structural Efficiency,Kyiv,Ukraine,2004.
|
| [30] |
Eurocode 3-Design of steel structures-part 1.4:general rules-supplementary rules for stainless steels[S]. Bauingenieur:European Committee for Strandardization,2011,86:336-347.
|
| [31] |
American Institute of Steel Construction(AISC). Specification for structural steel buildings:ANSI/AI SC 360-22[S]. Chicago,IL:AISC,2022.
|
| [32] |
中华人民共和国住房和城乡建设部. GB 50017—2017. 钢结构设计标准[S]. 北京:中国建筑工业出版社,2018.
|
| [33] |
中国国家标准化管理委员会. 金属材料 拉伸试验:第 1 部分:室温试验方法:GB/T 228.1—2010[S]. 北京:中国计划出版社,2010.
|
| [34] |
GUO X,TAO L,ZHU S,et al. Experimental Investigation of mechanical properties of aluminum alloy at high and low temperatures[J]. Journal of Materials in Civil Engineering,2020,32(2),06019016.
|
| [35] |
董昕. 低温环境下钢-混凝土组合梁柱构件极限承载力性能研究[D]. 天津:天津大学,2025.
|
| [36] |
YAN J B,DONG X,ZHU J S. Compressive behaviours of CFST stub columns at low temperatures relevant to the Arctic environment[J]. Construction and Building Materials,2019,223:503-519.
|