Research Progress on Dynamic Characteristic Monitoring Methods of Super High-Rise Buildings
-
摘要: 随着城市化进程的加速,我国超高层建筑数量急剧增加,然而这些建筑在运营和维护方面存在的问题也逐渐凸显。超高层建筑的服役安全问题引起了学者们的广泛关注。通过对超高层建筑动力特性参数识别的理论方法和实践应用的总结和分析,对以时域、频域、时频域及新型模态识别方法为代表的超高层建筑结构监测技术特点进行了归纳,然后对比了各类监测技术和系统的优势和局限性,并总结了当前超高层监测技术存在的主要问题,探讨了监测技术的发展趋势。最后对动力特性识别方法在超高层监测中的应用进行了梳理,以期为提高超高层建筑的动力特性识别和监测的准确性、有效性和可靠性提供参考依据,为提高我国超高层建筑的安全运营和维护水平提供借鉴。Abstract: The acceleration of urbanization has led to a sharp rise in the number of super high-rise buildings in China. However, the issues related to the operation and maintenance of those buildings have become increasingly prominent. As a result, extensive attention to the service safety of super high-rise buildings have been paid. Summarizing and analyzing the theoretical methods and practical applications of identifying dynamic characteristic parameters of super high-rise buildings, the characteristics of super high-rise building structure monitoring technique, which were represented by the time domain, frequency domain, time-frequency domain and the new modal recognition method. Subsequently, the advantages and limitations of each monitoring method and system were compared. Simultaneously, the main issues in the current monitoring technique for super high-rise buildings were summed and development trends of monitoring methods were discussed. Eventually, the application of dynamic characteristic identification in the monitoring of super high-rise buildings was sorted out which would be expected to present a reference basis for improcing accurcy, effectiveness and reliability of dynamic characteristic identification for super high-rise buildings and provide reference to improving operation and maintenance levels for super high-rise buildings in China.
-
[1] Council on Tall Buildings and Urban Habitat. Database of countries by number of 150m+ building[EB/OL]. (2023-03-27) [2023-11-22]. https://www.skyscrapercenter.com/countrie. [2] GARCíA-MACíAS E, UBERTINI F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy [J/OL]. Engineering Structures, 2020, 215[2023-11-22]. https://doi.org/10.1016/j.engstruct.2020. 110615. [3] 伊廷华, 周广东, 曲春绪, 等. 结构运营模态测-辨相和理论[J]. 土木工程学报, 2020, 53(10): 72-81. [4] 王凌波, 王秋玲, 朱钊, 等. 桥梁健康监测技术研究现状及展望[J]. 中国公路学报, 2021, 34(12): 25-45. [5] B F SPENCER, V HOSKERE, and Y NARAZAKI, Advances in computer vision-based civil infrastructure inspection and monitoring [J], Engineering 5, 2199222(2019). [6] 徐阳, 金晓威, 李惠. 土木工程智能科学与技术研究现状及展望[J]. 建筑结构学报, 2022, 43(9): 23-35. [7] S ZHONG, J ZHONG, and Q ZHANG, et al.Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift [J], Mechanical Systems and Signal Processing 93, 241254(2017). [8] QIAO L. Structural damage detection using signal-based pattern recognition [D]. Manhattan: Kansas State University, 2009. [9] S NANDAGOPALAN, Engineering applications of correlation and spectral analysis [J], Technometrics 36, 2220221(1994). [10] C Y SHIH, Y G TSUEI, and R J ALLEMANG, et al.Complex mode indication function and its applications to spatial domain parameter estimation [J], Mechanical Systems and Signal Processing 2, 4367377(1988). [11] GUILLAUME P, VERBOVEN P, VANLANDUIT S. Frequency- domain maximum likelihood identification of modal parameters with confidence intervals [J]. Noise and Vibration Engineering, 1998, 1: 359-366. [12] BRINCKER R, ZHANG L, ANDERSEN P. Modal identification from ambient responses using frequency domain decomposition [C]//Proceedings of the 18th International Modal Analysis Conference, 2000: 625-630. [13] F PIOLDI, R FERRARI, and E RIZZI, Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping [J], Mechanical Systems and Signal Processing 68-69, 265291(2016). [14] PIOLDI F, FERRARI R, RIZZI E. Seismic FDD modal identification and monitoring of building properties from real strong-motion structural response signals [J/OL]. Structural Control and Health Monitoring, 2017, 24[2023-11-27]. https://doi.org/10.1002/stc.1982. [15] YUN D Y, KIM D, KIM M, et al. Field measurements for identification of modal parameters for high-rise buildings under construction or in use [J/OL]. Automation in Construction, 2021, 121[2023-11-23]. https://doi.org/10.1016/j.autcon.2010.103446. [16] HASAN M D B A, AHMAD Z A B, LEONG M S, et al. Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates [J]. Journal of Vibroengineering, 2018, 20: 51919-51936. [17] 周思达, 曹博远, 周小陈. 结构应变模态参数辨识的最小二乘复频域方法[J]. 噪声与振动控制, 2017, 37(6): 17-22. [18] B PEETERS, H VAN DER AUWERAER, and P GUILLAUME, et al.The PolyMAX frequency-domain method: a new standard for modal parameter estimation? [J], Shock and Vibration 11, 3-4395409(2004). [19] EL-KAFAFY M, GUILLAUME P, PEETERS B, et al. Advanced frequency-domain modal analysis for dealing with measurement noise and parameter uncertainty [C]//Proceedings of the 30th International Modal Analysis Conference. 2012: 179-199. [20] 章国稳, 汤宝平, 陈卓. 多参考最小二乘复频域法的数值问题分析及优化[J]. 振动工程学报, 2021, 34(4): 690-696. [21] C W LIU, J Z WU, and Y G ZHANG, Review and prospect on modal parameter identification of spatial lattice structure based on ambient excitation [J], Applied Mechanics and Materials 94-96, 12711277(2011). [22] MAGALHãES F, CAETANO E, CUNHA Á. Challenges in the application of stochastic modal identification methods to a cable-stayed bridge [J]. Journal of Bridge Engineering, 2007, 12: 6746-6754. [23] JAMES Ⅲ G H, CARNE T G, LAUFFER J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines[R]. Technical Report: sand-92-1666 on DE 93010611. Albuquerque: Sandia National Labs, 1993. [24] ANDERSEN P. Identification of civil engineering structures using vector ARMA models [D]. Aalborg: Aalborg University, 1997. [25] DE MOOR B L R, VAN OVERSCHEE P, SUYKENS O J. Subspace algorithms for system identification and stochastic realization [C]//Proceedings of the International Symposium on Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing. 1991: 589-595. [26] JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction [J]. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620-627. [27] S A HOSSEINI KORDKHEILI, S H MOMENI MASSOULEH, and S HAJIREZAYI, et al.Experimental identification of closely spaced modes using NExT- ERA [J], Journal of Sound and Vibration 412, 116129(2018). [28] M CHANG, and S N PAKZAD, Modified natural excitation technique for stochastic modal identification [J], Journal of Structural Engineering 139, 1017531762(2013). [29] QU C X, YI T H, LI H N. Mode identification by eigensystem realization algorithm through virtual frequency response function [J/OL]. Structural Control and Health Monitoring, 2019, 26(10)[2023-11-23]. https//doi.org/10.1002/stc.2429. [30] CUNHA A, CAETANO E. Experimental modal analysis of civil engineering structures [J]. Sound and Vibration, 2006, 6(40): 12-20. [31] VOLD H, KUNDRAT J, ROCKLIN G T, et al. A multi-input modal estimation algorithm for mini- computers [J]. SAE Transactions, 1982, 91: 815-821. [32] S A HOSSEINI KORDKHEILI, S H MOMENI MASSOULEH, and S HAJIREZAYI, et al.Experimental identification of closely spaced modes using NExT- ERA [J], Journal of Sound and Vibration 412, 116129(2018). [33] BODEUX J B, GOLINVAL J C. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures [J]. Smart Materials and Structures, 2001, 10: 3479-489. [34] M BERTHA, and J C GOLINVAL, Identification of non-stationary dynamical systems using multivariate ARMA models [J], Mechanical Systems and Signal Processing 88, 166179(2017). [35] SPIRIDONAKOS M D, POULIMENOS A G, FASSOIS S D. Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: A comparative assessment of parametric methods [J]. Journal of Sound and Vibration, 2010, 329: 7768-7785. [36] BRINCKER R, ANDERSEN P, JACOBSEN N J. Automated frequency domain decomposition for operational modal analysis [C]//Proceedings of IMAC-XXIV: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2007: 1-7. [37] CERAVOLO R, ABBIATI G. Time domain identification of structures: Comparative analysis of output-only methods [J]. Journal of Engineering Mechanics, 2013, 139: 4537-4544. [38] ZHOU K, LI Q S. Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology [J/OL]. Journal of Building Engineering, 2022, 52[2023-11-23]. https://doi.org/10.1016/j.jobe.2022.104373. [39] ZHOU K, LI Q S, HAN X L. Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo-based stabilization diagram [J/OL]. Journal of Structural Engineering, 2022, 148(6)[2023-11-23].doi.org./10.1061/ (ASCE)ST.1943-541X.0003353. [40] JIN N, YANG Y, DIMITRAKOPOULOS E G, et al. Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle [J/OL]. Engineering Structures, 2021, 230[2023-11-23]. doi.org/10.1016/j. engstruct.2020.111688. [41] 李雪艳, 官宇航, 罗铭涛, 等.基于Welch法的协方差随机子空间方法的模态参数识别[J]. 力学学报, 2022, 54(10): 2850-2860. [42] LI H, YI T, GU M, et al. Evaluation of earthquake-induced structural damages by wavelet transform [J]. Progress in Natural Science, 2009, 19: 4461-470. [43] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [44] SHAN J, ZHANG H, SHI W, et al. Health monitoring and field-testing of high-rise buildings: A review [J]. Structural Concrete, 2020, 21: 41272-41285. [45] PENG Z, PETER W T, CHU F. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing, 2005, 19: 5974-5988. [46] 柳絮, 王坚, 李文. 集成变分模态分解和希尔伯特-黄变换的结构振动时频提取模型[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1686-1692. [47] 孙苗, 杨钧凯, 吴立. 改进希尔伯特-黄变换含噪振动信号时频分析[J/OL]. 上海交通大学学报(2023-03-21)[2023-11-24]. https://doi.org/10.16183/j.cnki.jsjtu.2022.255. [48] M H RAFIEI, and H ADELI, A novel machine learning‐based algorithm to detect damage in high‐rise building structures [J/OL], The Structural Design of Tall and Special Buildings 26, 1810.10021400(2017). [49] ZHOU K, XIE D L, XU K, et al. A machine learning-based stochastic subspace approach for operational modal analysis of civil structures [J/OL]. Journal of Building Engineering, 2023, 76[2023-11-23]. https://doi.org/10.1016/j.jobe.2023.107187. [50] GEORGIOUDAKIS M, PLEVRIS V. Response spectrum analysis of multi-story shear buildings using machine learning techniques [J]. Computation, 2023, 11(7)[2023-11-23]. https://doi.org/10.3390/computation.11070126. [51] KATAFYGIOTIS L S, YUEN K V. Bayesian spectral density approach for modal updating using ambient data [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(8): 1103-1123. [52] Y NI, X LU, and W LU, Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach [J], Mechanical Systems and Signal Processing 86, 286307(2017). [53] ZHANG F L, NI Y Q, NI Y C, et al. Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method [J]. Smart Structures and Systems, 2016, 17: 2209-2230. [54] B LI, and S K AU, An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes [J], Mechanical Systems and Signal Processing 132, 490511(2019). [55] AU S K, ZHANG F L, NI Y C. Bayesian operational modal analysis: theory, computation, practice [J]. Computers & Structures, 2013, 126: 3-14. [56] C A PEREZ-RAMIREZ, J P AMEZQUITA-SANCHEZ, and M VALTIERRA-RODRIGUEZ, et al.Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings [J], Engineering Structures 178, 603615(2019). [57] 熊红凯, 高星, 李劭辉, 等. 可解释化、结构化、多模态化的深度神经网络[J]. 模式识别与人工智能, 2018, 31(1): 1-11. [58] C M CHANG, T K LIN, and C W CHANG, Applications of neural network models for structural health monitoring based on derived modal properties [J], Measurement 129, 457470(2018). [59] OH B K, GLISIC B, KIM Y, et al. Convolutional neural network-based wind-induced response estimation model for tall buildings [J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34: 10843-10858. [60] YUN D Y, SHIM H B, PARK H S. SSI-LSTM network for adaptive operational modal analysis of building structures [J/OL]. Mechanical Systems and Signal Processing, 2023, 195[2023-11-23]. https://doi.org/j.ymssp.2023.1103.06. [61] M S HOSSAIN, Z C ONG, and Z ISMAIL, et al.Artificial neural networks for vibration based inverse parametric identifications: A review [J], Applied Soft Computing 52, 203219(2017). [62] 叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J].中国公路学报, 2019, 32(11): 21-39. [63] 杨娜, 汪德佳, 李天昊,等. 基于计算机视觉方法的古建筑变形监测[J]. 建筑结构学报, 2023, 44(1): 192-202. [64] 修晟, 张愿, 单伽锃. 基于视觉和振动监测数据融合的结构动态位移识别及其试验验证[J]. 工程力学, 2023, 40(11): 90-98. [65] GAO X, JI X, ZHANG Y, et al. Structural displacement estimation by a hybrid computer vision approach [J/OL]. Mechanical Systems and Signal Processing, 2023, 204[2023-11-24]. https://doi.org/10.1016/j.ymssp.2023.110754. [66] 胡卫华, 唐德徽, 李俊燕, 等. 基于分布式同步采集的赛格大厦结构动力学参数识别[J]. 建筑结构学报, 2022, 43(10): 76-84. [67] 吴睿, 廖聿宸, 宗周红, 等. 基于GNSS信号的随机子空间模态参数识别方法[J]. 东南大学学报(自然科学版), 2020, 50(6): 1045-1051. [68] 朱珊, 周文杰, 李晓莹. 混凝土健康监测技术综述[J]. 建筑结构, 2022, 52(增刊1): 2248-2252. [69] SHEN N, CHEN L, LIU J, et al. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring [J/OL]. Remote Sensing, 2019, 11(9)[2023-11-24]. https://doi.org/10.3390/rs1109001. 1. [70] YU J, MENG X, YAN B, et al. Global Navigation Satellite System-based positioning technology for structural health monitoring: a review [J/OL]. Structural Control and Health Monitoring, 2020, 27(1)[2023-11-24]. https://doi.org/10.1002/stc.2467. [71] P MOYO, J M W BROWNJOHN, and R SURESH, et al.Development of fiber Bragg grating sensors for monitoring civil infrastructure [J], Engineering Structures 27, 1218281834(2005). [72] 张兴斌, 杨昕光, 潘蓉, 等. 土木工程智能化监测评估系统的理论研究及应用[J]. 工业建筑, 2021, 51(12): 102-106. [73] 焦柯, 赖鸿立, 彭子祥, 等. 基于物联网的既有建筑全生命周期安全运维服务系统关键技术研究[J]. 工业建筑, 2021, 51(10): 201-210. [74] 伊廷华, 李宏男, 顾明. 结构健康监测中基于多重优化策略的传感器布置方法[J]. 建筑结构学报, 2011, 32(12): 217-223. [75] 刘春, 艾克然木·艾克拜尔, 蔡天池. 面向建筑健康监测的无人机自主巡检与裂缝识别[J]. 同济大学学报(自然科学版), 2022, 50(7): 921-932. [76] 周梦飞, 王子洋, 杨家富. 应用于无人车的三维点云分类方法研究综述[J]. 传感技术学报, 2022, 35(7): 931-937. [77] 普东东, 欧阳永忠, 马晓宇. 无人船监测与测量技术进展[J].海洋测绘, 2021, 41(1): 8-12. [78] LI Y, DIEUSSAERT E, BAETS R. Miniaturization of laser Doppler vibrometers: a review [J/OL]. Sensors, 2022, 22(13) [2023-11-24]. https://doi.org/10.3390/s22134735. [79] 涂淑琴, 薛月菊, 梁云等. RGB-D图像分类方法研究综述[J]. 激光与光电子学进展, 2016, 53(6): 35-48. [80] ABDELBARR M, CHEN Y L, JAHANSHAHI M R, et al. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor [J/OL]. Smart Materials and Structures, 2017, 26(12)[2023-11-24]. https://doi.org/10.1088/1361-665x/aa9450. [81] C Z DONG, O CELIK, and F N CATBAS, Marker-free monitoring of the grandstand structures and modal identification using computer vision methods [J], Structural Health Monitoring 18, 5-614911509(2019). [82] D FENG, and M Q FENG, Experimental validation of cost-effective vision-based structural health monitoring [J], Mechanical Systems and Signal Processing 88, 199211(2017). [83] LI Q, ZHI L H, TUAN A Y, et al. Dynamic behavior of Taipei 101 tower: Field measurement and numerical analysis [J]. Journal of Structural Engineering, 2011, 137: 1143-1155. [84] ZHI L, LI Q, WU J, et al. Field monitoring of wind effects on a super-tall building during typhoons [J]. Wind & Structures, 2011, 14(3): 253-283. [85] Y HE, X HAN, and Q LI, et al.Monitoring of wind effects on 600 m high Ping-An Finance Center during Typhoon Haima [J], Engineering Structures 167, 308326(2018). [86] W SHI, J SHAN, and X LU, Modal identification of Shanghai World Financial Center both from free and ambient vibration response [J], Engineering Structures 36, 1426(2012). [87] XIE B, LUO X Q, ZHANG Q L, et al. Dynamic response evaluation of the Shanghai Tower in along-and across-wind directions during super typhoon Lekima [J/OL]. Journal of Building Engineering, 2023, 65[2023-11-24]. https://doi.org/10.1016/j.jobe.2022.1058808. [88] HE Y, LI Z, FU J, et al. Enhancing the performance of stochastic subspace identification method via energy-oriented categorization of modal components [J/OL]. Engineering Structures, 2021, 233[2023-11-24]. https://doi.org/j.engstruct.2021.111917. [89] H S PARK, and B K OH, Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy [J], Automation in Construction 85, 273289(2018). [90] F L ZHANG, H B XIONG, and W X SHI, et al.Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach [J], Structural Control and Health Monitoring 23, 1113661384(2016). [91] XU Y L, CHEN S, ZHANG R. Modal identification of Di Wang Building under typhoon York using the Hilbert-Huang transform method [J]. The Structural Design of Tall and Special Buildings, 2003, 12: 121-147. [92] J P AMEZQUITA-SANCHEZ, H S PARK, and H ADELI, A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform [J], Engineering Structures 147, 148159(2017). [93] WANG C, LI Z, HU L, et al. Field research on the wind- induced response of a super high-rise building under typhoon [J/OL]. Applied Sciences, 2019, 9(11)[2023-11-24]. https://doi.org/10.3390/app9112180. [94] GUO Y, KWON D K, KAREEM A. Near-real-time hybrid system identification framework for civil structures with application to Burj Khalifa [J/OL]. Journal of Structural Engineering, 2016, 142(2)[2023-11-24]. https://doi.org/10.1061/(ASCE)ST.1943-541x.0001402. [95] 刘彦辉, 谭平, 周福霖, 等. 广州电视塔直线电机驱动的主动质量阻尼器动力特性研究[J]. 建筑结构学报, 2015, 36(4): 126-132. [96] 周云, 吴胜, 李家乐. 钢管叠层黏弹性阻尼器设计方法[J]. 建筑结构学报, 2023, 44(3): 79-86. [97] LU X, ZHANG Q, WU W, et al. Data-driven two-level performance evaluation of eddy-current tuned mass damper for building structures using shaking table and field testing [J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34: 138-157. [98] 滕军, 幸厚冰. 京基100大厦AMD控制系统在线计算关键技术研究[J]. 振动与冲击, 2011, 30(11): 230-235. [99] 滕军, 陈朝骏, 幸厚冰, 等. 考虑结构高阶振型信息的AMD低维控制器设计[J]. 振动工程学报, 2016, 29(6): 1048-1056.
点击查看大图
计量
- 文章访问数: 420
- HTML全文浏览量: 23
- PDF下载量: 47
- 被引次数: 0