Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression
-
摘要: 对开孔钢板加劲中空夹层圆钢管混凝土柱的轴压性能进行了研究。采用ABAQUS软件建立有限元模型,在验证模型可靠性的基础上,对构件进行荷载-位移曲线分析、应力分布与破坏模式分析和参数分析,进而提出开孔钢板加劲中空夹层圆钢管混凝土柱轴压承载力的设计方法。研究结果表明:开孔钢板可以增强钢管和混凝土的共同受力和约束效应。构件各参数推荐取值:钢材牌号Q355、混凝土强度等级C60、开孔直径35 mm、开孔间距15 mm、加劲钢板厚度5 mm、加劲钢板个数4个,此时,与中空夹层钢管混凝土柱比较,承载力可提高9.6%,与不开孔钢板加劲中空夹层钢管混凝土柱的承载力比较,承载力只降低1.9%,因此开孔可以节省钢材,且保证一定的承载力。通过将规范中的计算公式,增加加劲钢板承载力贡献项,同时考虑开孔直径对承载力的影响和钢板对混凝土强度提高的作用,提出的轴压承载力设计方法可以较为安全地预测其轴压承载力。
-
关键词:
- 开孔钢板 /
- 中空夹层钢管混凝土柱 /
- 轴压性能 /
- 有限元分析
Abstract: The mechanical properties of concrete-filled double-skin steel tubular columns stiffened with perforated steel plates was studied. The finite element model was established by ABAQUS software. On the basis of verifying the reliability of the model, the load-displacement curve, stress distribution, failure mode and parameter analysis of the members were carried out. Furthermore, the design method of bearing capacity of concrete-filled double-skin steel tubular columns stiffened by perforated steel plates under axial compression was proposed. The results showed that the perforated steel plate could enhance the joint force and restraint effect of steel tube and concrete. The recommended values of each parameter of the component should be: steel grade Q355, concrete strength grade C60, opening diameter 35 mm, opening spacing 15 mm, stiffened steel plate thickness 5 mm, and the number of stiffened steel plates should be 4, at this time, the bearing capacity could be increased by 9.6% compared with the concrete-filled double-skin steel tube column, and the bearing capacity is only reduced by 1.9% compared with the bearing capacity of the concrete-filled double-skin steel tube column stiffened with steel plates. Therefore, the opening could save steel and ensure a certain bearing capacity. By adding the contribution of the bearing capacity of the stiffened steel plate to the calculation formula in the specification, and considering the influence of the opening diameter on the bearing capacity and the effect of the steel plate on the improvement of the concrete strength, the proposed design method of axial bearing capacity could safely predict its axial bearing capacity. -
[1] 蔡绍怀. 现代钢管混凝土结构.[M].2版.北京:人民交通出版社, 2007. [2] 陶忠, 于清.新型组合结构柱:试验、理论与方法[M].北京:科学出版社, 2006. [3] HAN L H, REN Q X, LI W. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns[J]. Journal of Constructional Steel Research, 2011, 67(3): 437-452. [4] HASAN H G, EKMEKYAPAR T. Bond-slip behavior of concrete filled double skin steel tubular (CFDST) columns[J]. Marine Structures, 2021, 79: 1-18. [5] LIAO F Y, HAN L H, TAO Z. Behavior of composite joints with concrete encased CFST columns under cyclic loading: Experiments[J]. Engineering Structures, 2014, 59(2): 745-764. [6] 中国电力企业联合会.输电线路中空夹层钢管混凝土杆塔技术规范:T/CEC 185—2018[S]. 北京: 中国电力出版社, 2018. [7] 中国土木工程学会.中空夹层钢管混凝土结构技术规程: T/CCES 7—2020[S].北京:中国建筑工业出版社, 2020. [8] 谌扬宇, 宁寄慧, 张永鑫, 等.中空夹层圆钢管混凝土短柱的压弯承载力计算法[J].建筑钢结构进展, 2021, 23(12): 85-93. [9] 黄宏, 戚本豪, 王慧智, 等.大空心率圆中空夹层钢管超高性能混凝土短柱轴压力学性能研究[J].建筑钢结构进展, 2022, 24(4):24-31, 46. [10] 刘永健, 李慧, 张宁, 等.PBL加劲型矩形钢管混凝土界面粘结-滑移性能[J].建筑科学与工程学报, 2015, 32(5):1-7. [11] TAO Z, HAN L H, ZHAO X L. Behavior of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research, 2004, 60(8): 1129-1158. [12] UENAKA K. CFDST stub columns having outer circular and inner square sections under compression[J]. Journal of Constructional Steel Research, 2016, 120(4): 1-7. [13] WANG F C, HAN L H, LI W. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression[J]. Thin-Walled Structures, 2018, 127(5): 756-768. [14] 王先铁, 庞亚红, 高欢, 等.内配格构式钢骨钢管混凝土构件的抗弯性能[J].土木与环境工程学报(中英文), 2022, 44(5):165-176. [15] 黄宏, 张安哥, 李毅, 等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报, 2011, 32(2):75-82. [16] TAO Z, HAN L H, WANG Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural(HSS) stub columns[J].Journal of Constructional Steel Research, 2005, 61(7): 962-983. [17] 孙焱焱, 王振波, 盛超, 等.带肋方钢管混凝土短柱承载力及延性研究[J].应用力学学报, 2017, 34(1):136-141, 202. [18] 梁危, 董江峰, 王清远.带肋中空夹层方钢管混凝土柱轴压性能的试验研究[J].工程科学与技术, 2018, 50(6):132-140. [19] 姜磊, 刘永健, 张俊光.开孔钢板加劲型方钢管混凝土长柱轴压性能试验研究[J].建筑结构学报, 2016, 37(5):122-128. [20] 李肖, 张元植.设平板加劲肋矩形钢管混凝土柱静载下ABAQUS本构模型的研究[J]建筑钢结构进展, 2021, 23(8):84-96. [21] 钟善桐.钢管混凝土结构[M].北京:清华大学出版社, 2003. [22] 赵晖, 张颖, 王蕊.内钢板中空方形钢管混凝土叠合柱轴压力学性能研究[J].建筑结构学报, 2022, 43(6):53-62, 141. [23] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010(2015版)[S].北京:中国建筑工业出版社, 2016. [24] 刘威. 钢管混凝土局部受压时的工作机理研究[D].福州:福州大学, 2005. [25] 王宇航, 曹锋, 周绪红, 等.风电混合塔筒中空夹层钢管混凝土转接结构轴压性能试验研究[J].建筑钢结构进展, 2023, 25(4):25-36. [26] WANG H, GUO Y H, BAI Y T, et al. Experimental and numerical study on the stability capacity of Q690 high-strength circular steel tubes under axial compression[J]. International Journal of Steel Structures, 2017, 17(3): 843-861. [27] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46. [28] 韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学版社, 2016.
点击查看大图
计量
- 文章访问数: 110
- HTML全文浏览量: 16
- PDF下载量: 9
- 被引次数: 0