Research on Mechanical Mechanism of Circle Tubular Steel Column-I-Shaped Section Dual-Lintel Joints in Traditional Style Buildings
-
摘要: 传统风格建筑中的梁柱节点构造特殊,最明显的特征是节点域被双梁从上至下依次分为3个核心区。为研究全焊圆钢管柱-工字钢双梁节点的受力机理,进行了2个全焊中节点和2个全焊边节点试件的拟静力试验。试件设计中为了更好地观察节点变形,对节点核心区壁厚进行了削弱。结果表明:双梁节点的核心区由阑额、由额和圆钢管柱分别组成了3个核心区;节点处的3个核心区受力存在差异,变形整体上均集中在节点中核心区和下核心区,其中以下核心区为主要破坏区域。中核心区以侧面出现严重屈曲为主,下核心区在弯剪作用下沿着斜对角线方向凹陷屈曲变形;中节点的破坏是下核心区底部母材被撕裂,裂缝穿过焊接工艺孔;而边节点则是上梁上翼缘和柱壁连接处焊缝断裂。推导了节点下核心区的最大剪应力计算公式,并依据试验结果,考虑轴压比和节点形式的影响来对下核心区剪应力系数进行修正。Abstract: The dual-lintel-column joints in traditional style buildings have special construction, and their most obvious feature is that the dual-lintel divide the joint domain into three core zones from top to bottom. In order to study the mechanical mechanism of circle tubular steel column- I-shaped section dual-lintel joints in traditional style buildings, two all-welded inner joints and two all-welded exterior joints were tested in the quasi-static test. The wall thickness of the core zone was weakened in order to obtain the damage mechanism in the core zone of the joints. The test results indicated that the core area of the dual-lintel joint had three core zones, which consisted of upper lintels, lower lintels and circle tubular steel columns. The three zones of I-shaped section dual-lintel joints in traditional style buildings differed in their stresses, and were overall concentrated in the middle and lower core zones of the joint, with the lower core zone being the main damage area. The middle core zone was dominated by severe lateral buckling, while the lower core zone was deformed by bending shear in the direction of diagonal depression. The final damage of the inner joint was that the base material at the lower end of the lower core was torn and the crack passed through the welding process hole, whereas the failure mode of the exterior joint was the fracture of the weld between the upper flange of the upper beam and the column. The maximum shear stress of the lower core of the joint was derived, and the shear stress factor in the lower core was corrected considering the effects of axial compression ratio and joint form based on the test results.
-
[1] 余志祥,赵世春,吴昊,等. 丽江火车站大悬挑重檐钢结构站房风荷载CFD分析[J]. 建筑结构学报,2009,24(增刊2):153- 158. [2] 田永复. 中国仿古建筑构造精解[M]. 北京:化学工业出版社,2012. [3] 王磊. 清式厅堂古建筑与仿古建筑的结构性能比较研究[D]:西安:西安建筑科技大学,2012. [4] 苏光辉. 基于材料特性的仿古建筑斗栱节点力学性能研究[D]. 天津:天津大学,2012. [5] 师希望. 甘肃省泾川县某高层钢结构舍利塔的抗震性能分析[D]. 太原:太原理工大学,2011. [6] 李诫. 营造法式[M]. 上海:商务印书馆,1932. [7] 谢启芳,李朋,王龙,等. 传统风格钢筋混凝土梁-柱节点抗剪机理分析与抗剪承载力计算[J]. 建筑结构,2014,44(19):81- 86. [8] 薛建阳,翟磊,马林林,等. 钢结构仿古建筑带斗栱檐柱抗震性能试验研究及有限元分析[J]. 土木工程学报,2016,49(7):57- 67. [9] 薛建阳,吴占景,隋龑,等. 传统风格建筑钢结构双梁-柱中节点抗震性能试验研究及有限元分析[J]. 工程力学,2016,33(5):97- 105. [10] XUE J Y,DONG J S,YAN S. Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint[J]. Earthquake and Structures,2017,13(4):409- 419. [11] 隋龑,薛建阳,吴占景,等. 钢结构仿古建筑阻尼节点动力加载试验及有限元分析[J]. 建筑结构学报,2018,33(6):110- 118. [12] 车顺利,贾俊明,吴琨,等. 某传统风格建筑钢结构楼阁设计[J]. 建筑结构,2017,47(22):47- 50,81. [13] 谢启芳,李朋,葛鸿鹏,等. 传统风格钢筋混凝土梁-柱节点抗震性能试验研究[J]. 世界地震工程,2015,31(4):150- 158. [14] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018. [15] 中华人民共和国建设部. 建筑抗震试验方法规程:JGJ 101—96[S]. 北京:中国建筑工业出版社,1996. [16] 薛建阳. 一种古建筑双梁-柱节点试验的梁端连接装置:ZL201420635422.1[P]. 2015-02-25. -
点击查看大图
计量
- 文章访问数: 53
- HTML全文浏览量: 20
- PDF下载量: 2
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: