Experimental Study and Numerical Analysis of Hybrid Fiber Reinforced Self-Compacting Concrete Segments at High Temperatures
-
摘要: 为研究预加荷载对混杂纤维自密实混凝土管片高温力学性能的影响,对5块缩尺管片进行高温试验,获得管片炉温、混凝土温度、变形和破坏模式等发展规律。此外,基于ABAQUS软件,建立升降温混杂纤维混凝土各阶段本构关系计算子程序,重点分析了显(隐)式瞬态热应变和预加荷载等对试件位移和等效塑性拉应变的影响规律。结果表明:随着预加荷载增加,管片侧面裂缝数量变多且长度变小,外弧面裂缝数量变少,内弧面裂缝分布更均匀;纤维的掺入有助于降低裂缝平均间距以及管片拱脚处混凝土高温损伤。瞬态热应变对降温阶段管片等效塑性拉应变分布有重要影响,采用显式瞬态热应变时,管片等效塑性拉应变分布与试验裂缝区域较为一致。Abstract: To study the preloading on the mechanical properties of hybrid fiber self-compacting concrete segments at high-temperatures, high-temperature tests were conducted on five segments to obtain the segment furnace temperature, concrete temperature, deformation, and failure mode. A calculation subroutine was developed based on ABAQUS software to establish a temperature field and mechanical analysis model for hybrid reinforced fiber self-compacting concrete segments. The appropriate constitutive relations during the different stages were selected, and the influence of explict or implicit transient thermal strain and preload on segment displacement and equivalent plastic tensile strain was analyzed. The results showed that as the preload increased, the number of cracks on the side of the segment increased and the length became smaller, the number of cracks on the outer arc surface decreased, the distribution of cracks on the inner arc surface became more uniform, and the addition of fibers was helpful to reduce the average crack spacing and the high temperature damage of concrete at the arch foot of segment. The transient thermal strain had an important influence on the equivalent plastic tensile strain distribution of the segment during the cooling stage. When the explicit transient thermal strain was used, the equivalent plastic tensile strain distribution of the segment was more consistent with the test crack area.
-
Key words:
- tunnel segments /
- hybrid fibers /
- high temperature test /
- preloading /
- transient thermal strain
-
[1] CHANG S H, CHOI S W, BAE G J. Assessment of fire-induced damage on concrete segment of shield TBM tunnel[J]. Key Engineering Materials, 2006, 42: 321-323. [2] 闫治国. 隧道衬砌结构火灾高温力学行为及耐火方法研究[D]. 上海: 同济大学, 2007. [3] 闫治国, 朱合华, 梁利. 火灾高温下隧道衬砌管片力学性能试验[J]. 同济大学学报(自然科学版), 2012, 40(6): 823-828. [4] YAN Z G, ZHU H H, JU J W. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures[J]. Construction and Building Materials, 2013, 38(2): 610-618. [5] YAN Z G, SHEN Y, ZHU H H, et al. Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature[J]. Fire Safety Journal, 2015, 71: 86-99. [6] 李俊杰. 盾构隧道管片及接头耐火试验方法研究[D]. 徐州: 中国矿业大学, 2021. [7] 郭信君. 盾构隧道混凝土管片构件抗火性能试验及模拟分析研究[D]. 长沙: 中南大学, 2013. [8] 张高乐, 张稳军, 喻国伦. 火灾高温下盾构隧道衬砌结构热力耦合模型试验[J]. 中国公路学报, 2019, 32(7): 120-128. [9] 张聪. 混杂纤维自密实混凝土梁高温作用前后的受弯性能[D]. 大连: 大连理工大学, 2013. [10] 梁宇. 混杂纤维自密实混凝土梁高温后抗剪性能试验研究[D]. 长春: 东北电力大学,2020. [11] HUA N, KHORASANI N E, TESSARI A, et al. Experimental study of fire damage to reinforced concrete tunnel slabs[J/OL]. Fire Safety Journal, 2022, 127[2021-11-25]. https://doi.org/10.1016/j.firesaf.2021.103504. [12] LAI H P, WANG S Y, XIE Y L. Experimental research on temperature field and structure performance under different lining water contents in road tunnel fire[J]. Tunnelling and Underground Space Technology, 2014, 43: 327-335. [13] KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41: 1112-1122. [14] KODUR V, KHALIQ W. Effect of temperature on thermal properties of different types of high-strength concrete[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 793-80. [15] NOVAK J, KOHOUKOVA A. Fire response of hybrid fiber reinforced concrete to high temperature[J]. Procedia Engineering, 2017, 172: 784-790. [16] 郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9): 107-114. [17] 王冠. 非均匀受火约束高强纤维混凝土柱的抗火性能研究[D]. 苏州: 苏州科技学院, 2014. [18] 韩东. 高温下超韧纤维混凝土结构温度场及力学性能研究[D]. 沈阳: 沈阳建筑大学, 2017. [19] 王程沛. 钢筋纤维混凝土构件抗火性能有限元分析[D]. 长春: 东北电力大学, 2021. [20] KHALIQ W, KODUR V. Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns[J/OL]. Journal of Structural Engineering, 2018, 144(3). [2018-05-01]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001981. [21] SADAOUI A, KHENANE A. Effect of transient creep on behaviour of reinforced concrete columns in fire[J]. Engineeing Structures, 2009, 31: 2203-2208. [22] SADAOUI A, KHENANE A. Effect of transient creep on behaviour of reinforced concrete beams in fire[J]. ACI Materials Journal, 2012, 109(6): 607-616. [23] 王勇. 钢框架结构中2×2区格连续混凝土板抗火性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [24] YI S, ZHU H H, YAN Z G, et al. Semi-analytical thermo-mechanical model for the shield tunnel segmental joint subjected to elevated temperatures[J/OL]. Tunnelling and Underground Space Technology, 2021, 118.[2021-09-17]. https:/doi.org/10.1016/j.tust.2021.104170. [25] 朱伟. 隧道标准规范(盾构篇)及解说[M]. 北京: 中国建筑工业出版社, 2001. [26] 陈思威. 钢板加固盾构隧道管片衬砌承载性能及其高温下劣化规律研究[D]. 广州: 华南理工大学,2021. [27] 中华人民共和国住房和城乡建设部. 建筑设计防火规范:GB 50016—2014[S]. 北京: 中国计划出版社, 2014. [28] 王勇, 王腾焱, 袁广林, 等. 基于不同混凝土本构模型的混凝土双向板火灾行为分析[J]. 工程力学, 2016, 33(11): 208-219. [29] 王广勇, 薛素铎. 混凝土瞬态热应变及计算[J]. 北京工业大学学报, 2008, 34(4): 387-390. [30] TAO Z, WANG X Q, UY B. Stress-strain curves of structural steel and reinforcing steel after exposure to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1306-1316.
点击查看大图
计量
- 文章访问数: 39
- HTML全文浏览量: 6
- PDF下载量: 0
- 被引次数: 0