Seismic Performance Analysis of UHPC Composite Columns Confined by GFRP Tubes
-
摘要: 为研究玻璃纤维增强复材(GFRP)纤维丝缠绕角度与轴压比对GFRP管约束超高性能混凝土(UHPC)组合柱抗震性能的影响,设计了6个GFRP管约束UHPC组合柱和1个UHPC对比柱,并开展了试件在水平低周往复荷载和轴力共同工作下的拟静力试验,分析了试件的骨架曲线特征。为进一步探究径厚比、长细比、约束管环向弹性模量、混凝土抗拉强度对该组合柱抗震性能的影响,建立了一种组合柱有限元分析模型,分析了不同设计下结构的耗能能力。结果表明:GFRP管对提高UHPC柱的抗震性能效果显著,组合柱的破坏形态、峰值荷载和峰值位移均得到提高;有限元分析结果与试验结果吻合良好,验证了分析模型的有效性;通过拓展分析发现,随着径厚比的减小与环向弹性模量的增大,试件的承载力增强,耗能能力变差;随着长细比的减小,试件的承载力增大,极限位移变小,耗能能力变差;混凝土抗拉强度对试件抗震性能有影响,但影响较小。通过回归分析,提出了一种适用于GFRP管约束UHPC组合柱的抗剪承载力计算式。Abstract: In order to study the influence of winding angle and axial compression ratio of GFRP fibers on the seismic performance of UHPC composite columns confined by GFRP tubes, six GFRP tube confined UHPC composite columns and one UHPC composite column were designed, and the quasi-static tests of the specimens under quasi-static load and axial force were carried out, and the skeleton curve characteristics of the structure were analyzed. In order to further explore the effects of diameter-thickness ratio, slenderness ratio, circumferential elastic modulus of confined tubes, and tensile strength of concrete on the seismic performance of the composite column, a finite element analysis model of composite column is established, and the energy dissipation capacity of the structure with different design schemes was analyzed. The results showed that GFRP tube was effective in improving the seismic performance of UHPC columns, and the failure mode, peak load and peak displacement of composite columns were improved, and the finite element analysis results were in good agreement with the experimental results, which verified the effectiveness of the analysis model. Through the extended analysis, it was found that the bearing capacity of the specimen increased and the energy dissipation capacity became worse with the decrease of diameter-thickness ratio and the increase of circumferential elastic modulus. With the decrease of slenderness ratio, the bearing capacity of the specimen increased, the ultimate displacement became smaller, and the energy dissipation capacity became worse. The tensile strength of concrete had an effect on the seismic performance of the specimen, but the effect was small. Through regression analysis, a formula of shear capacity of UHPC composite columns confined by GFRP tubes was proposed.
-
Key words:
- GFRP pipe /
- UHPC /
- finite element analysis /
- seismic performance /
- shear capacity
-
[1] 祝明桥, 董嘉睿, 李智.玻璃纤维增强复材管约束纤维增强自密实活性粉末混凝土长柱轴压性能试验研究[J].工业建筑, 2022, 52(9):28-34. [2] 周岩, 张金源.GFRP管混凝土柱低周反复载荷下抗震性能研究[J].炼油与化工, 2014, 25(2):6-8, 59. [3] 杨城. GFRP管实心混凝土长柱力学性能研究 [D]. 杭州:浙江工业大学, 2016. [4] 任士朴. FRP约束钢筋混凝土桥墩抗震性能研究 [D]. 西安:长安大学, 2014. [5] 刘寿康. 低周反复荷载下FRP管混凝土柱滞回性能分析 [D]. 大庆:东北石油大学, 2013. [6] 王清湘, 赵鹏展, 关洪波.GFRP管混凝土柱抗震性能试验研究[J].工业建筑, 2010, 40(4):70-74. [7] 马文. GFRP管约束型钢再生混凝土柱抗震性能试验研究 [D]. 广州:广州大学, 2020. [8] 肖建庄, 黄一杰.GFRP管约束再生混凝土柱抗震性能与损伤评价[J].土木工程学报, 2012, 45(11):112-120. [9] 杨旭. GFRP约束再生块体混凝土柱的轴压及抗震性能试验与分析[D]. 广州:华南理工大学, 2021. [10] 邓宗才, 顾佳培.FRP管约束活性粉末混凝土方柱抗震性能研究[J].震灾防御技术, 2019(4):769-780. [11] 赵悦. FRP管活性粉末混凝土柱抗震性能非线性分析 [D]. 哈尔滨:黑龙江大学, 2016. [12] 宋化宇. GFRP管-型钢活性粉末混凝土组合柱轴压与抗震性能研究 [D]. 大庆:东北石油大学, 2021. [13] 祝明桥, 李智, 张紫薇.玻璃纤维增强复材管自密实微膨胀活性粉末混凝土短柱轴压性能试验研究[J].工业建筑, 2021, 51(5):188-195. [14] 王磊佳, 祝明桥, 董嘉睿.基于改进Drucker-Prager准则的GFRP管约束高强混凝土短柱单轴压缩分析模型[J].应用力学学报, 2023, 40(2):397-404. [15] 中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社, 2019. [16] ATSM. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe by split disk method:ASTM D2290-19[S]. West Conshohocken, PA, USA: ASTM, 2019. [17] 全国纤维增强塑料标准化技术委员会.纤维增强热固性塑料管轴向压缩性能试验方法:GB/T 5350—2005[S]. 北京:中国标准出版社, 2015. [18] 吴有明. 活性粉末混凝土(RPC)受压应力-应变全曲线研究 [D]. 广州:广州大学, 2012. [19] 沈涛. 活性粉末混凝土单轴受压本构关系及结构设计参数研究 [D]. 哈尔滨:哈尔滨工业大学, 2014. [20] 单波. 活性粉末混凝土基本力学性能的试验与研究 [D]. 长沙:湖南大学, 2002. [21] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究 [D]. 北京:北京交通大学, 2006. [22] 于冬雪, 于化杰, 黎红兵.FRP建筑材料的结构性能及应用综述[J].材料导报, 2021, 35(增刊2):660-668. [23] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011—2010[S]. 2016版. 北京:中国建筑工业出版社, 2016. [24] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社, 2015. [25] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社, 2014. [26] JIN L, FAN L, LI D, et al. Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: modelling and formulation[J]. Thin-Walled Structures, 2020, 157, 107158. [27] TOMII M, SAKINO K. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force[J]. Transactions of the Architectural Institute of Japan, 1979, 281: 81-92. [28] YE Y, HAN L H, TAO Z, et al. Experimental behaviour of concrete-filled steel tubular members under lateral shear loads[J]. Journal of Constructional Steel Research, 2016, 122: 226-237. [29] COUNCIL A T. Quantification of building seismic performance factors [M]. US: Department of Homeland Security, FEMA, 2009. [30] ZOHREVAND P, MIRMIRAN A. Seismic response of ultra-high performance concrete-filled FRP tube columns[J]. Journal of Earthquake Engineering, 2013, 17(1): 155-170.
点击查看大图
计量
- 文章访问数: 14
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0