Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete
-
摘要: 重晶石骨料的高度结晶结构使其具有易碎性,导致重晶石防辐射混凝土的力学性能差,限制其在高压高热核工程等辐射严重的建筑中应用。为研究聚丙烯纤维掺入对重晶石混凝土力学性能的影响,通过试验分析聚丙烯纤维掺量(0、3、6、9 kg/m3)对不同强度等级重晶石混凝土力学性能的影响,同时量化重晶石混凝土立方体抗压强度的尺寸效应,此外,采用扫描电子显微镜(SEM)探究聚丙烯纤维重晶石混凝土的细观结构。结果表明:纤维表面被致密硬化的水泥基质包裹,提高了聚丙烯纤维-水泥基体的结构强度,从而使得重晶石混凝土的劈裂抗拉强度和抗折强度提高;随着纤维掺量的增加,试件28 d抗压强度提高了4.3%~19.6%,28 d抗折和劈裂抗拉强度分别提高了1.8%~25.0%和4.9%~27.7%;当纤维掺量较大时,水泥含量无法满足纤维的包裹,因此重晶石混凝土抗压强度随着纤维掺量的增加呈现先增大后降低的趋势;重晶石混凝土立方体抗压强度的尺寸效应随着纤维掺量的增加逐渐显著,与未掺纤维的试件相比,尺寸效应系数η100增大0.2%~5.9%、尺寸效应系数η200增大1.8%~5.9%。Abstract: The highly crystalline structure of barite aggregate makes it fragile, resulting in poor mechanical properties of barite radiation-proof concrete, which limits its application in buildings with severe radiation such as high-pressure and high-thermonuclear projects. To study the effect of polypropylene fiber incorporation on the mechanical properties of barite concrete, the effects of polypropylene fiber content (0, 3, 6, 9 kg/m3) on the mechanical properties of barite concrete with different strength grades were analyzed, and the size effect of barite concrete cube compressive strength was quantified. The meso-structure of polypropylene fiber barite concrete was studied via SEM test. The results showed that the surface of PR40 fiber was wrapped by a dense hardened cement matrix, which improved the structural strength of the polypropylene fiber-cement matrix, thus improving the splitting tensile strength and flexural strength of barite concrete. With the increase in fiber content, the 28 d compressive strength of the specimens increased by 4.3%-19.6%, and the 28 d flexural and splitting tensile strength increased by 1.8%-25.0% and 4.9%-27.7%, respectively. When the fiber content increased, the cement content could not meet the fiber wrapping, so the compressive strength of barite concrete increased first and then decreased with the increase of fiber contents. The size effect of the compressive strength of barite concrete cubes was gradually significant with the increase of fiber content. Compared with the specimens without fiber, the size effect coefficient η100 increased by 0.2%-5.9%, and the size effect coefficient η200 increased by 1.8%-5.9%.
-
Key words:
- barite concrete /
- polypropylene fiber /
- mechanical property /
- size effect /
- meso-structure
-
[1] 余胜海. 能源战争[M]. 北京:北京大学出版社, 2012. [2] 陈清己. 重晶石防辐射混凝土配合比设计及其性能研究[D]. 长沙:中南大学, 2010. [3] MASLEHUDDIN M, NAQVI A A, IBRAHIM M, et al. Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots[J]. Annals of Nuclear Energy, 2013, 53(11): 192-196. [4] Y1LMAZ E, BALTAS H, K1R1S E, et al. Gamma-ray and neutron shielding properties of some concrete materials[J]. Annals of Nuclear Energy, 2011, 38(10): 2204-2212. [5] ATTACHAIYAWUTH A, RATH S, TANAKA K, et al. Improvement of self-compactibility of air-enhanced self-compacting concrete with fine entrained air[J]. Journal of Advanced Concrete Technology, 2016, 14(3): 55-69. [6] ENSOY A, GÖKÇE H. Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields[J]. Construction and Building Materials, 2020, 253(8): 1-8. [7] ELHAM M, JALIL M, MOHAMMAD R R D. Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation[J]. Construction and Building Materials, 2023, 370(2): 1-10. [8] GONZÁLEZ-ORTEGA M, CAVALARO S, AGUADO A. Influence of barite aggregate friability on mixing process and mechanical properties of concrete[J]. Construction and Building Materials, 2015, 74(1): 169-175. [9] 梁宁慧, 钟杨, 刘新荣. 多尺寸聚丙烯纤维混凝土抗弯韧性试验研究[J]. 中南大学学报(自然科学版), 2017, 48(10): 2783-2789. [10] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high-performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197(2): 464-473. [11] YUAN Z, JIA Y M. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study[J]. Construction and Building Materials, 2021, 266(1): 1-13. [12] ASTM International. Standard specification for aggregates for radiation-shielding concrete:ASTM C637[S]. West Conshohocken:2014. [13] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京:中国建筑工业出版社, 2016. [14] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京:中国建筑工业出版社, 2019. [15] ASTM International. Standard guide for examination of hardened concrete using scanning electron microscopy:ASTM C1723—2010[S]. West Conshohocken:2010. [16] CHEN M, CHEN W, ZHONG H, et al. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete[J]. Cement and Concrete Composites, 2019, 98(4): 95-112. [17] AFROUGHSABET V, OZBAKKALOGLU T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers[J]. Construction and Building Materials, 2015, 94(6): 73-82. [18] FALLAH S, NEMATZADEH M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Construction and Building Materials, 2017, 132(6): 170-187. [19] LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 118(6): 27-35. [20] YEW M K, MAHMUD H B, ANG B C, et al. Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete[J]. Construction and Building Materials, 2015, 90(6): 36-43.
点击查看大图
计量
- 文章访问数: 33
- HTML全文浏览量: 5
- PDF下载量: 2
- 被引次数: 0