中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维增强重晶石混凝土的力学性能及细观结构研究

王庆贺 徐苏宁 王禹澄 王东 王萌 宋晓光

王庆贺, 徐苏宁, 王禹澄, 王东, 王萌, 宋晓光. 聚丙烯纤维增强重晶石混凝土的力学性能及细观结构研究[J]. 工业建筑, 2024, 54(7): 210-216. doi: 10.3724/j.gyjzG23070508
引用本文: 王庆贺, 徐苏宁, 王禹澄, 王东, 王萌, 宋晓光. 聚丙烯纤维增强重晶石混凝土的力学性能及细观结构研究[J]. 工业建筑, 2024, 54(7): 210-216. doi: 10.3724/j.gyjzG23070508
WANG Qinghe, XU Suning, WANG Yucheng, WANG Dong, WANG Meng, SONG Xiaoguang. Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 210-216. doi: 10.3724/j.gyjzG23070508
Citation: WANG Qinghe, XU Suning, WANG Yucheng, WANG Dong, WANG Meng, SONG Xiaoguang. Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 210-216. doi: 10.3724/j.gyjzG23070508

聚丙烯纤维增强重晶石混凝土的力学性能及细观结构研究

doi: 10.3724/j.gyjzG23070508
基金项目: 

国家自然科学基金项目(51808351)

辽宁省教育厅项目(JYTMS20231562)

住房和城乡建设部科学技术计划项目(2019-K-054)。

辽宁省科技厅应用基础研究计划项目(2022JH5/101300524)

详细信息
    作者简介:

    王庆贺,博士,教授,主要从事结构工程和材料工程的研究。电子信箱:wangqinghe@sjzu.edu.cn

Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete

  • 摘要: 重晶石骨料的高度结晶结构使其具有易碎性,导致重晶石防辐射混凝土的力学性能差,限制其在高压高热核工程等辐射严重的建筑中应用。为研究聚丙烯纤维掺入对重晶石混凝土力学性能的影响,通过试验分析聚丙烯纤维掺量(0、3、6、9 kg/m3)对不同强度等级重晶石混凝土力学性能的影响,同时量化重晶石混凝土立方体抗压强度的尺寸效应,此外,采用扫描电子显微镜(SEM)探究聚丙烯纤维重晶石混凝土的细观结构。结果表明:纤维表面被致密硬化的水泥基质包裹,提高了聚丙烯纤维-水泥基体的结构强度,从而使得重晶石混凝土的劈裂抗拉强度和抗折强度提高;随着纤维掺量的增加,试件28 d抗压强度提高了4.3%~19.6%,28 d抗折和劈裂抗拉强度分别提高了1.8%~25.0%和4.9%~27.7%;当纤维掺量较大时,水泥含量无法满足纤维的包裹,因此重晶石混凝土抗压强度随着纤维掺量的增加呈现先增大后降低的趋势;重晶石混凝土立方体抗压强度的尺寸效应随着纤维掺量的增加逐渐显著,与未掺纤维的试件相比,尺寸效应系数η100增大0.2%~5.9%、尺寸效应系数η200增大1.8%~5.9%。
  • [1] 余胜海. 能源战争[M]. 北京:北京大学出版社, 2012.
    [2] 陈清己. 重晶石防辐射混凝土配合比设计及其性能研究[D]. 长沙:中南大学, 2010.
    [3] MASLEHUDDIN M, NAQVI A A, IBRAHIM M, et al. Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots[J]. Annals of Nuclear Energy, 2013, 53(11): 192-196.
    [4] Y1LMAZ E, BALTAS H, K1R1S E, et al. Gamma-ray and neutron shielding properties of some concrete materials[J]. Annals of Nuclear Energy, 2011, 38(10): 2204-2212.
    [5] ATTACHAIYAWUTH A, RATH S, TANAKA K, et al. Improvement of self-compactibility of air-enhanced self-compacting concrete with fine entrained air[J]. Journal of Advanced Concrete Technology, 2016, 14(3): 55-69.
    [6] ENSOY A, GÖKÇE H. Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields[J]. Construction and Building Materials, 2020, 253(8): 1-8.
    [7] ELHAM M, JALIL M, MOHAMMAD R R D. Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation[J]. Construction and Building Materials, 2023, 370(2): 1-10.
    [8] GONZÁLEZ-ORTEGA M, CAVALARO S, AGUADO A. Influence of barite aggregate friability on mixing process and mechanical properties of concrete[J]. Construction and Building Materials, 2015, 74(1): 169-175.
    [9] 梁宁慧, 钟杨, 刘新荣. 多尺寸聚丙烯纤维混凝土抗弯韧性试验研究[J]. 中南大学学报(自然科学版), 2017, 48(10): 2783-2789.
    [10] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high-performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197(2): 464-473.
    [11] YUAN Z, JIA Y M. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study[J]. Construction and Building Materials, 2021, 266(1): 1-13.
    [12] ASTM International. Standard specification for aggregates for radiation-shielding concrete:ASTM C637[S]. West Conshohocken:2014.
    [13] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京:中国建筑工业出版社, 2016.
    [14] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京:中国建筑工业出版社, 2019.
    [15] ASTM International. Standard guide for examination of hardened concrete using scanning electron microscopy:ASTM C1723—2010[S]. West Conshohocken:2010.
    [16] CHEN M, CHEN W, ZHONG H, et al. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete[J]. Cement and Concrete Composites, 2019, 98(4): 95-112.
    [17] AFROUGHSABET V, OZBAKKALOGLU T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers[J]. Construction and Building Materials, 2015, 94(6): 73-82.
    [18] FALLAH S, NEMATZADEH M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Construction and Building Materials, 2017, 132(6): 170-187.
    [19] LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 118(6): 27-35.
    [20] YEW M K, MAHMUD H B, ANG B C, et al. Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete[J]. Construction and Building Materials, 2015, 90(6): 36-43.
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2024-08-16

目录

    /

    返回文章
    返回