Research on Mechanical and Thermal Properties of Fiber-Reinforced Alkali Slag Cementitious Sandwich Panels
-
摘要: 为解决国内外保温墙体易发生火灾、保温层材料不环保等问题,设计了一种由纤维增强碱矿渣胶凝材料为页墙、秸秆板为夹芯层的新型复合墙体,并测试了新型夹芯板的力学性能和热工性能。试验结果表明:在力学性能方面,夹芯板在轴心荷载作用下发生劈裂破坏,适量的连接件可有效提升夹芯板的承载力,钢丝网片对夹芯板的承载力提升不明显,并提出了新型夹芯板的承载力计算式;在热工性能方面,新型夹芯板的导热系数为0.21 W/(m·K),低于混凝土(1.28 W/(m·K))和建筑砖(0.69 W/(m·K))的导热系数。碱矿渣胶凝材料作为低碳固废胶凝材料,有望替代传统水泥基材料,其夹芯板具有优良的力学性能和良好的保温隔热性能。
-
关键词:
- 低碳固废胶凝材料:夹芯板 /
- 力学性能 /
- 热流计法
Abstract: In order to solve the problems of fire-prone insulation walls and environmentally-unfriendly insulation layer materials at home and abroad, the paper designed a new composite wall made of fiber-reinforced alkali slag cementitious material as the page wall and straw board as the sandwich layer, and tested the mechanical and thermal properties of the new sandwich panel. The test results showed that: in terms of mechanical properties, the sandwich panel split and broke under the action of the axial load, the appropriate amount of connectors could effectively improve the bearing capacity of the sandwich panel, the wire mesh did not significantly improve the bearing capacity of the sandwich panel, and the formula for calculating the bearing capacity of the new sandwich panel was proposed. In terms of thermal performance, the thermal conductivity of the new sandwich panel was 0.21 W/(m·K), which was lower than that of concrete (1.28 W/(m·K)) and building brick (0.69 W/(m·K)). In summary, it can be seen that alkali slag cementitious material is a low-carbon solid waste cementitious material, which is expected to replace traditional cement-based materials. Its sandwich panel has excellent mechanical properties and good thermal insulation performance. -
[1] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach[J]. Journal of Engineering Mechanics,2005,131(6): 20-54. [2] 陈曦, 冷红, 马彦红. 哈尔滨城市街区形态影响建筑能耗的尺度识别和机制探析[J]. 工业建筑, 2023, 53(1): 91-99. [3] 王乐鹏, 卢紫丁, 陆青. 我国公共建筑能耗调查研究综述[J]. 能源与环境, 2013 (1): 15-17. [4] O'HEGARTY R, KINNANE O. Review of precast concrete sandwich panels and their innovations[J]. Construction and Building Materials, 2020, 233, 117145. [5] PIMRAKSA K, CHINDAPRASIRT P, RUNGCHET A, et al. Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios[J]. Materials Science and Engineering: A, 2011, 528(21): 6616-6623. [6] 柯善北. 提升建筑绿色发展质量 助力实现"双碳"目标 《"十四五"建筑节能与绿色建筑发展规划》解读[J]. 中华建设, 2022(5): 1-2. [7] 朱晶, 冯世辉, 郭清华,等. 掺加麦秆植物纤维碱矿渣胶凝材料墙体热工性能试验[J]. 工业建筑, 2021, 51(4): 58-62,180. [8] 朱晶, 郑文忠, 谢礼立,等. 不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J]. 工业建筑, 2019, 49(5): 109-114. [9] 郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015: 1-12. [10] KIACHEHR B, MOHAMMAD S. The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete [J]. Journal of Building Engineering, 2018, 20: 442-454. [11] JIANG M H, CHEN X J. Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar[J]. Journal of Infrastructure Systems, 2014, 20(4): 40-70. [12] 罗熠民, 郑毅, 李荣. 纤维增强复材混合芯层夹芯板受弯性能试验研究[J]. 工业建筑, 2020, 50(3): 167-171,166. [13] 马森, 赵启林. 复合材料波纹夹芯板成型工艺及其端部连接性能研究[J]. 工业建筑, 2018, 48(11):182-186. [14] 陈柏帆. 一体化木/碳纤维增强复合材料夹芯板抗弯性能和热工性能研究[D]. 成都:西南科技大学, 2022. [15] SYLAJ V, FAM A. UHPC sandwich panels with GFRP shear connectors tested under combined bending and axial loads[J]. Engineering Structures, 2021, 248, 113287. [16] HUANG Q, HAMED E, GILBERT R I. Behavior of concrete sandwich panels under eccentric axial compression-testing and finite element analysis[J]. ACI Structural Journal, 2020, 117(3): 235-247. [17] 陈士兴, 苏波. BFRP夹芯屋面板传热性能研究[J]. 中国水运(下半月), 2021, 21(12): 145-146.
点击查看大图
计量
- 文章访问数: 5
- HTML全文浏览量: 1
- PDF下载量: 0
- 被引次数: 0