Numerical Simulations for Force and Deformation of Utility Tunnels over a Ground Fissure
-
摘要: 以穿越地裂缝场地的郑州某综合管廊区间为研究对象,采用数值模拟的方法,分析地裂缝上盘不同沉降量时地表土和管廊的受力与变形情况。分析结果表明,由于管廊刚度较大,当上盘沉降量较小时,管廊所对应的地表土发生隆起;随着沉降量的增大,地表土隆起量减小,甚至发生沉降,综合管廊的沉降也变大,弯曲程度也越大。上盘发生沉降时,管廊顶板处产生拉应力,拉应力最大值出现在管廊顶板中央,管廊底板处产生压应力,压应力最大值出现在管廊底板中央。随着上盘沉降量的增大,管廊的最大拉压应力都会增加。当上盘发生沉降时,在管廊宽度方向上的变形在0.1~10 μm,属于微小变形,在管廊轴向的变形量较大,在管廊高度方向的变形量最大,但不同位置的变形大小没有规律。Abstract: Taking an interval of a utility tunnel over a ground fissure in Zhengzhou as the research object, numerical simulations were conducted to analyze the force and deformation of the ground and the utility tunnel in different settlements of the hangingwall of the ground crack. The analysis results showed that due to the large stiffness of the utility tunnel, when the settlement of the hangingwall was smaller, the ground over the utility tunnel heaved; with the increase in settlement, the heave of the ground dropped and the ground even settled, and the settlement and flexure of the utility tunnel increased. When the hangingwall settled, the tensile stress occurred in the top plate of the utility tunnel, and the maximum tensile stress generated at the center of the top plate of the utility tunnel. and the maximum value of tensile stress appears in the center of the top plate; simultaneously, the compressive stress generated in the bottom plate of the utility tunnel, and the maximum compressive stress appeared in the center of the bottom plate of the utility tunnel. With the increase in settlement of the hangingwall, both of the tensile and compressive stresses increased. When the hangingwall settled, the deformation in the direction of width of the utility tunnel was between 0.1 to 10 μm, which was tiny deformation. the deformation in the direction of axle of the utility tunnel was larger and the largest was in the direction of height, however, the deformation at each joint had not regularity.
-
[1] 薛娜, 李鸿晶, 李秀菊, 等.穿越正断层埋地管线的破坏模式分析[J].重庆大学学报, 2016, 39(2):123-130. [2] 王滨, 李昕, 周晶.地震断层作用下的埋地管道等效分析模型[J].防灾减灾工程学报, 2009, 29(1):44-50. [3] 贾媛媛, 路军富, 魏龙海, 等.隧道降水施工对既有市政管线隧道影响研究[J].水文地质工程地质, 2010, 37(6):43-49. [4] 冯伟, 么惠全.采空塌陷区管道成灾机理分析及工程防治措施[J].水文地质工程地质, 2010, 37(3):112-115. [5] 杨剑, 王恒栋.液化土中综合管廊的地震响应分析初探[J].地下空间与工程学报, 2013, 9(增刊1):1762-1769. [6] 史晓军, 陈隽, 李杰.综合管廊大型振动台模型试验研究[J].地震工程与工程振动, 2008, 28(6):116-123. [7] 史晓军, 陈隽, 李杰.非一致地震激励综合管廊振动台模型试验研究(Ⅰ):试验方法[J].地震工程与工程振动, 2010, 30(1):147-154. [8] 陈隽, 史晓军, 李杰.非一致地震激励综合管廊振动台模型试验研究(Ⅱ):试验结果[J].地震工程与工程振动, 2010, 30(2):123-130. [9] 李杰, 岳庆霞, 陈隽.综合管廊结构振动台模型试验与有限元分析研究[J].地震工程与工程振动, 2009, 29(4):41-45. [10] 岳庆霞, 李杰.综合管廊地震响应研究[J].同济大学学报(自然科学版), 2009, 37(3):285-290. [11] 郭恩栋, 余世舟, 吴伟.地下管道工程震害分析[J].地震工程与工程振动, 2006, 26(3):180-183. [12] 郭恩栋, 王鹏宇, 刘述虹, 等.典型综合管廊体系的地震响应分析[J].地震工程与工程振动2018, 38:124-134. [13] KAWASHIMA K.Seismic design of underground structures in soft ground:a review[C]//Proceedings of IS TOKYO 99, International Symposium of International Society for Soil Mechanics and Geotechnical Engineering.Rotterdam:Balkema, 2000. [14] SHAMSABADI A, SEDARAT H, KOZAK A, et al.Seismic soil-tunnel-structure interaction analysis and retrofit of the posey-webster street tunnels[EB/OL].[2023-06-13].http://academia.edu/63464240/Sersmic.Soil_Tunnel_Interaction_Analysis_and_Retorofit_of_the_Posey_Webster_Street_Tunnels. [15] 汤爱平, 李志强, 冯瑞成, 等.共同沟结构体系振动台模型试验与分析[J].哈尔滨工业大学学报, 2009, 41(6):1-5. [16] 胡翔, 薛伟辰.预制预应力综合管廊受力性能试验研究[J].土木工程学报, 2010, 43(5):29-37. [17] PENG J B, CHEN L W, HUANG Q B, et al.Physical simulation of ground fissures triggered by underground fault activity[J].Engineering Geology, 2013, 155:19-30. [18] PENG J B, HUANG Q B, HU Z P, et al.A proposed solution to the ground fissure encountered in urban metro construction in Xi’an China[J].Tunneling and Underground Space Technology, 2017, 61:12-25. [19] LIU N, HUANG Q B, MA Y J, et al.Experimental study of a segmented metro tunnel in a ground fissure area[J].Soil Dynamic and Earthquake Engineering, 2017, 100:410-416. [20] LIU N, HUANG Q B, FAN W, et al.Seismic responses of a metro tunnel in a ground fissure site[J].Geo-mechanical and Engineering, 2018, 15(2):775-781. [21] 贺农农, 李 攀, 邵生俊, 等.西安地铁隧道穿越饱和软黄土地段的地表沉降监测[J].地球科学与环境学报, 2012, 34(1):96-103. [22] 门玉明, 张结红, 刘洪佳, 等.西安地铁隧道穿越地裂缝带的计算模型探讨[J].地球科学与环境学报, 2011, 33(1):95-100. [23] 吴超. 郑州市宏明路地裂缝成因机理研究[D].郑州:华北水利水电大学, 2017. [24] 刘洪佳.隐伏地裂缝作用下的盾构隧道变形破坏机制及力学模型研究[D].西安:长安大学, 2012. [25] 张丹.综合管廊结构斜穿地裂缝的变形破坏机理及结构防灾设计[D].西安:长安大学, 2021. [26] 吴明, 彭建兵, 贺凯等.地铁隧道受平行向地裂缝错动影响数值分析[J].工程地质学报, 2015, 23(5):1020-1029. [27] 李新生, 王万平, 王静, 等.西安地裂缝两盘地层岩土物理力学性质研究[J].水文地质工程地质, 2008(2): 58-61. [28] 胡志平, 王启耀, 黄强兵, 等.地裂缝活动下分段式马蹄形隧道特殊变形缝的三维变形特征试验研究[J].岩石力学与工程学报, 2009, 28(12): 2475-2481. [29] 胡志平, 赵振荣, 朱启东, 等.西安某地裂缝两侧黄土物理力学性质试验[J].地球科学与环境报, 2009, 31(1): 85-88. [30] 卢全中, 葛修润, 彭建兵, 等.三轴压缩条件下裂隙性黄土的破坏特征[J].岩土力学, 2009, 30(12): 3689-3694. [31] 汪宝存. 郑州市地裂缝遥感识别与监测[J]. 测绘与空间地理信息, 2015, 38 (10): 64-66, 69.
点击查看大图
计量
- 文章访问数: 28
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0