中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢筋与钢纤维混凝土的黏结性能研究进展

慕儒 王倩 杨书杰 陈向上 张磊 卿龙邦

慕儒, 王倩, 杨书杰, 陈向上, 张磊, 卿龙邦. 钢筋与钢纤维混凝土的黏结性能研究进展[J]. 工业建筑, 2024, 54(3): 206-214. doi: 10.3724/j.gyjzG23060210
引用本文: 慕儒, 王倩, 杨书杰, 陈向上, 张磊, 卿龙邦. 钢筋与钢纤维混凝土的黏结性能研究进展[J]. 工业建筑, 2024, 54(3): 206-214. doi: 10.3724/j.gyjzG23060210
MU Ru, WANG Qian, YANG Shujie, CHEN Xiangshang, ZHANG Lei, QING Longbang. Research Progress on Bonding Performance Between Rebars and Steel Fiber Reinforced Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 206-214. doi: 10.3724/j.gyjzG23060210
Citation: MU Ru, WANG Qian, YANG Shujie, CHEN Xiangshang, ZHANG Lei, QING Longbang. Research Progress on Bonding Performance Between Rebars and Steel Fiber Reinforced Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 206-214. doi: 10.3724/j.gyjzG23060210

钢筋与钢纤维混凝土的黏结性能研究进展

doi: 10.3724/j.gyjzG23060210
基金项目: 

国家自然科学基金项目(52078180, 52178199);河北省交通运输厅科技项目(JX-202018)。

详细信息
    作者简介:

    慕儒,男, 1971年出生,博士,教授级高级工程师,博士生导师,主要从事纤维混凝土、超高性能混凝土、混凝土耐久性等的研究。电子信箱: ru_mu@hotmail.com

Research Progress on Bonding Performance Between Rebars and Steel Fiber Reinforced Concrete

  • 摘要: 钢筋与混凝土间良好的黏结性能是钢筋混凝土构件正常工作的基础,对结构性能有显著影响。在混凝土中掺入钢纤维会显著提高混凝土的抗裂性和抗拉性能,从而可有效改善钢筋与混凝土的黏结性能。论述归纳了钢筋与钢纤维混凝土(SFRC)的黏结性能研究现状,包括黏结机理、黏结强度、黏结滑移模型三个方面。首先,通过黏结力组成、黏结破坏模式及钢纤维增强机理阐明了钢筋与SFRC间的黏结机理;其次,分析了不同中心拉拔试件和试验装置测试结果对结构设计的适用性,总结了钢筋与SFRC的黏结强度测试方法和影响因素,除了钢筋类型、混凝土强度、横向钢筋约束等因素,掺加钢纤维对黏结性能有重要影响;然后,归纳分析了黏结强度计算模型及黏结滑移本构关系,比较分析了各模型的适用性和优缺点;最后,建议了提高钢筋与SFRC黏结性能的方法。
  • [1] GAO X, LI N, REN X. Analytic solution for the bond stress-slip relationship between rebar and concrete[J]. Construction and Building Materials, 2019, 197:385-397.
    [2] KETIYOT R, HANSAPINYO C, CHARATPANGOON B. Nonlinear strut-and-tie model with bond-slip effect for analysis of RC beam-column joints under lateral loading[J]. International Journal of Geomate, 2018, 15(47):81-88.
    [3] ALFARAH B, MURCIA-DELSO J, LÓPEZ-ALMANSA F, et al. RC structures cyclic behavior simulation with a model integrating plasticity, damage, and bond-slip[J]. Earthquake Engineering&Structural Dynamics, 2018, 47(2):460-478.
    [4] American Concrete Institute (ACI) Committee. Bond and development of straight reinforcing bars in tension:ACI 408R-03[S]. ACI:Farmington Hills, MI, USA, 2003.
    [5] 陕亮.钢-聚丙烯混杂纤维高强混凝土与变形钢筋黏结性能研究[D].武汉:武汉大学, 2016.
    [6] GALI S, SUBRAMANIAM K V L. Improvements in fracture behavior and shear capacity of fiber reinforced normal and selfconsolidating concrete:A comparative study[J]. Construction and Building Materials, 2018, 189:205-217.
    [7] KIM B, DOH J H, YI C K, et al. Effects of structural fibers on bonding mechanism changes in interface between GFRP bar and concrete[J]. Composites Part B:Engineering, 2013, 45(1):768-779.
    [8] ZHANG X, ZHANG W, CAO C, et al. Positive effects of aligned steel fiber on bond behavior between steel rebar and concrete[J/OL]. Cement and Concrete Composites, 2020, 114, 103828[2023-01-01]. https://doi.org/10.1016/j.cemconcomp.2020.103828.
    [9] 高丹盈,陈刚,汤寄予,等.钢筋与钢纤维混凝土黏结强度计算方法研究[J].建筑结构学报, 2018, 39(9):149-157.
    [10] LI X, ZHANG J, LIU J, et al. Bond behavior of spiral ribbed ultra-high strength steel rebar embedded in plain and steel fiber reinforced high-strength concrete[J]. KSCE Journal of Civil Engineering, 2019, 23(10):4417-4430.
    [11] JANSSON A, LOFGREN I, LUNDGREN K, et al. Bond of reinforcement in self-compacting steel fiber reinforced concrete[J]. Magazine of Concrete Research, 2012, 64(7):617-630.
    [12] SULAIMAN M F, MA C K, APANDI N M, et al. A review on bond and anchorage of confined high-strength concrete[J]. Structures, 2017, 11:97-109.
    [13] 刘玲利.变形钢筋与钢纤维全轻混凝土黏结性能试验研究[D].郑州:华北水利水电大学, 2019.
    [14] 陈刚.钢筋钢纤维纳米混凝土黏结及梁受弯性能计算方法[D].郑州:郑州大学, 2017.
    [15] 徐锋.复杂应力状态下钢筋与混凝土的黏结性能[D].大连:大连理工大学, 2012.
    [16] ZHANG W, LEE D, LEE C, et al. Bond performance of SFRC considering random distributions of aggregates and steel fibers[J]. Construction and Building Materials, 2021, 291, 123304.
    [17] HOLSCHEMACHER K, WEIßE D. Bond of reinforcement in fiber reinforced concrete[C]//6th International RILEM Symposium on Fiber Reinforced Concretes. RILEM Publications SARL, 2004:349-358.
    [18] DE MELO F M C, DE JESUS CRUZ A C A, DE SOUZA NETTO L D, et al. Experimental study of bond between steel bars and hybrid fibers reinforced concrete[J/OL]. Construction and Building Materials, 2021, 275, 122176[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2020.122176.
    [19] WU K, CHEN F, LIN J F, et al. Experimental study on the interfacial bond strength and energy dissipation capacity of steel and steel fiber reinforced concrete (SSFRC) structures[J/OL]. Engineering Structures, 2021, 235, 112094[2023-01-01]. https://doi.org/10.1016/j.engstruct.2021.112094.
    [20] SHAN W C, LIU J P, DING Y, et al. Assessment of bond-slip behavior of hybrid fiber reinforced engineered cementitious composites (ECC) and deformed rebar via AE monitoring[J/OL]. Cement and Concrete Composites, 2021, 118, 103961[2023-01-01]. https://doi.org/10.1016/j.cemconcomp.2021.103961.
    [21] 高丹盈.钢纤维混凝土与钢筋的黏结强度[J].郑州工学院学报, 1990, 11(3):54-60.
    [22] HUANG L, CHI Y, XU L, et al. Local bond performance of rebar embedded in steel-polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading[J]. Construction and Building Materials, 2016, 103:77-92.
    [23] 王毅红,赵小琴,姚圣法,等.高强变肋钢筋与混凝土间黏结锚固性能梁式试验[J].重庆大学学报, 2020, 43(9):32-40.
    [24] SHARMA A, BOŠNJAK J, OŽBOLT J, et al. Numerical modeling of reinforcement pull-out and cover splitting in fire-exposed beam-end specimens[J]. Engineering Structures, 2016, 111(1):217-232.
    [25] 中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081-2019[S].北京:中国建筑工业出版社, 2019.
    [26] 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S].北京:中国建筑工业出版社, 2012.
    [27] RILEM. Technical Recommendations for the testing and use of construction materials[M]. London:CRC Press, 1994.
    [28] GARCIA-TAENGUA E, MARTÍ-VARGAS J R, SERNA P. Bond of reinforcing bars to steel fiber reinforced concrete[J]. Construction and Building Materials, 2016, 105:275-284.
    [29] NEMATZADEH M, SHAHMANSOURI A A, ZABIHI R. Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods[J]. Structures, 2021, 31:1141-1162.
    [30] WILLE K. Influence of fiber volume fraction and fiber orientation on the uniaxial tensile behavior of rebar-reinforced ultra-high performance concrete[J]. Fibers, 2019, 7:67-86.
    [31] CHEN Y X, YU J, YOUNAS H, et al. Experimental and numerical investigation on bond between steel rebar and high-strength StrainHardening Cementitious Composite (SHCC) under direct tension[J/OL]. Cement and Concrete Composites, 2020, 112[2023-01-01]. https://doi.org/10.1016/j.cemconcomp.2020.103666.
    [32] FEHLING E, LORENZ P, LEUTBECHER T. Experimental investigations on anchorage of rebars in UHPC[C]//Proceedings of Hipermat 20123rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 2012:533-540.
    [33] CHEUNG A K F, LEUNG C K Y. Effective joining of pre-cast concrete slabs with self-compacting HSFRCC[J]. Journal of Advanced Concrete Technology, 2011, 9(1):41-49.
    [34] HAO Q, WANG Y, HE Z, et al. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials, 2009, 23(2):865-871.
    [35] XU S, NIE B, LI A. Bond properties for plain bars in frost-damaged concrete[J]. Magazine of Concrete Research, 2019, 71(18):975-988.
    [36] DING Y, MAO W H, WEI W, et al. Bond behavior and anchorage length of deformed bars in steel-polyethylene hybrid fiber engineered cementitious composites[J/OL]. Engineering Structures, 2022, 252, 113675[2023-01-01]. https://doi.org/10.1016/j.engstruct.2021.113675.
    [37] CHAO S H, NAAMAN A E, PARRA-MONTESINOS G J. Bond behavior of reinforcing bars in tensile strain-hardening fiber reinforced cement composites[J]. ACI Structural Journal, 2009, 106(6):897-906.
    [38] NZAMBI A K L L, OLIVEIRA D R C, OLIVEIRA A M, et al. Pull-out tests of ribbed steel reinforcing bars embedded in concrete with steel fibers[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2021, 174(3):181-189.
    [39] FENG Q, WEI P, ZHAO K, et al. Experimental investigation of stirrup confinement effects on bond-slip responses for corner and middle bars[J/OL]. Construction and Building Materials, 2022, 314, 125629[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2021.125629.
    [40] WU K, ZHENG H, ZHAO J, et al. Experimental study on interfacial bond behavior and analysis of bond stress of steel and steel fiber reinforced concrete composite structure[J]. Structures, 2021, 30:156-165.
    [41] HUANG H, YUAN Y, ZHANG W, et al. Bond properties between GFRP bars and hybrid fiber-reinforced concrete containing three types of artificial fibers[J/OL]. Construction and Building Materials, 2020, 250, 118857[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2020.118857.
    [42] QI J N, CHENG Z, MA Z J, et al. Bond strength of reinforcing bars in ultra-high performance concrete:Experimental study and fiber matrix discrete model[J/OL]. Engineering Structures, 2021, 248, 113290[2023-01-01]. https://doi.org/10.1016/j.engstruct.2021. 113290.
    [43] WU L L, XU X, WANG H, et al. Experimental study on bond properties between GFRP bars and self-compacting concrete[J/OL]. Construction and Building Materials, 2022, 320, 126186[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2021.126186.
    [44] GÜNEYISI E, GESOĞLU M, İPEK S. Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes[J]. Construction and Building Materials, 2013, 47:358-365.
    [45] GAO K, LI Z, ZHANG J, et al. Experimental research on bond behavior between GFRP bars and stirrups-confined concrete[J]. Applied Sciences, 2019, 9(7), 1340.
    [46] ACI Committee. Building code requirements for structural concrete and commentary:ACI 318-08[S]. Farmington Hills:American Concrete Institute, 2008.
    [47] BAE B I, CHOI H K, CHOI C S. Bond stress between conventional reinforcement and steel fibre reinforced reactive powder concrete[J]. Construction and Building Materials, 2016, 112:825-835.
    [48] YAZICI S, AREL H S. The effect of steel fiber on the bond between concrete and deformed steel bar in SFRCs[J]. Construction and Building Materials, 2013, 40:299-305.
    [49] HUANG L, XU L, CHI Y, et al. Bond strength of deformed bar embedded in steel-polypropylene hybrid fiber reinforced concrete[J]. Construction and Building Materials, 2019, 218:176-192.
    [50] KANG S T, KIM J K. The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41(10):1001-1014.
    [51] LI H, MU R, QING L B, et al. The influence of fiber orientation on bleeding of steel fiber reinforced cementitious composites[J]. Cement and Concrete Composites, 2018, 92:125-134.
    [52] HUANG H H, GAO X J, KHAYAT K H, et al. Influence of fiber alignment and length on flexural properties of UHPC[J/OL]. Construction and Building Materials, 2021, 290, 122863[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2021.122863.
    [53] MU R, DIAO C R, LIU H Q, et al. Design, preparation and mechanical properties of full-field aligned steel fiber reinforced cementitious composite[J/OL]. Construction and Building Materials, 2021, 272, 121631[2023-01-01]. https://doi.org/10.1016/j.conbuildmat.2020.121631.
    [54] ROY M, HOLLMANN C, WILLE K. Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete[J]. Construction and Building Materials, 2017, 146:582-593.
    [55] SLISERIS J. Numerical analysis of reinforced concrete structures with oriented steel fibers and rebars[J]. Engineering Fracture Mechanics, 2018, 194:337-349.
    [56] ZHANG X H, HE F B, CHEN J, et al. Orientation of steel fibers in concrete attracted by magnetized rebar and its effects on bond behavior[J/OL]. Cement and Concrete Composites, 2023, 138, 104977[2023-01-01]. https://doi.org/10.1016/j.cemconcomp.2023.104977.
    [57] KE L, LIANG L M, FENG Z, et al. Bond performance of CFRP bars embedded in UHPFRC incorporating orientation and content of steel fibers[J/OL]. Journal of Building Engineering, 2023, 73, 106827[2023-01-01]. https://doi.org/10.1016/j.jobe.2023.106827.
    [58] ACI Committee. Building code requirements for structural concrete and commentary:ACI 318-14[S]. Farmington Hills:American Concrete Institute, 2014.
    [59] FIB. Model Code 2010-Final draft:Volume 1[M]. Lausanne, Switzerland:Ernst and Sohn, 2012.
    [60] Structural use of concrete, part 1, code of practice for design and construction:BS 8110[S]. British Standards Institution, 1997.
    [61] 唐九如,严永成,周起敬.钢纤维砼与变形钢筋黏结性能的试验研究[J].东南大学学报(自然科学版), 1990, 20(1):55-62.
    [62] TEPFERS R. Cracking of concrete cover along anchored deformed bars[J]. Magazine of Concrete Research, 1979, 31(106):3-12.
    [63] 邵卓民,沈文都,徐有邻.钢筋砼的锚固可靠度及锚固设计[J].建筑结构学报, 1987(4):36-49.
    [64] WU Y F, ZHAO X M. Unified bond stress-slip model for reinforced concrete[J]. Journal of Structural Engineering, 2013, 139(11):1951-1962.
    [65] COCCIA S, DI MAGGIO E, RINALDI Z. Bond slip model in cylindrical reinforced concrete elements confined with stirrups[J]. International Journal of Advanced Structural Engineering (IJASE), 2015, 7(4):365-375.
    [66] LIN H, ZHAO Y, OZBOLT J, et al. Analytical model for the bond stress-slip relationship of deformed bars in normal strength concrete[J]. Construction and Building Materials, 2019, 198:570-586.
    [67] 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].北京:清华大学, 1990.
    [68] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2010.
    [69] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations[J]. Earthquake Engineering Research Center, 1983, 4:69-80.
    [70] CHU S H, KWAN A K H. A new bond model for reinforcing bars in steel fibre reinforced concrete[J/OL]. Cement and Concrete Composites, 2019, 104, 103405[2023-01-01]. https://doi.org/10.1016/j.cemconcomp.2019.103405.
    [71] HARAJLI M H. Bond stress-slip model for steel bars in unconfined or steel, FRC, or FRP confined concrete under cyclic loading[J]. Journal of Structural Engineering, 2009, 135:509-518.
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回