Research on Dynamic Prediction of Multi-Index Variables During Foundation Excavation Based on the Genetic Algorithm
-
摘要: 针对现有机器学习预测模型训练效率低、算法单一、可能带来陷入局部极值、无法收敛等问题,结合反向传播(BP)人工神经网络、遗传算法和残差网络建立了深基坑多指标变化量的遗传算法-残差网络混合模型(GA-ResNN动态预测模型)和施工风险评价方法,研发了基坑施工风险智能预警平台。研究表明:提出的GA-ResNN动态预测模型较BP神经网络模型和GA-BP网络模型具有更好的预测精度,风险评估模型可实现定量预测和定性风险等级的评价。基坑施工风险智能预警平台通过输出预测曲线和预警阈值,可提升基坑工程的智能化管理和风险管控水平。Abstract: A hybrid model of genetic algorithm combined with residual network (the GA-ResNN dynamic prediction model) for multi-index variables during deep foundation excavation and the construction risk assessment method were established by combining the back propagation (BP) artificial neural network, genetic algorithm(GA), and residual network(ResNN) to address the problems of low training efficiency of existing machine learning prediction models, the possibility of a single algorithm falling into local optima, and inability to converge. An intelligent early warning platform for excavation construction risks was developed. Research showed that the proposed GA-ResNN dynamic prediction model was of better prediction accuracy compared with the BP neural network model and GA-BP network model and could realize quantitative prediction and qualitative risk level evaluation. The intelligent warning platform for foundation excavation construction risks could present the prediction curve and warning threshold, which could improve the intelligent management and risk control level for engineering projects of foundation excavation.
-
[1] 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309-319. [2] 李豪杰, 独知行, 石娴, 等. 一种改进的动态灰色GM(1, 1)模型在深基坑形变监测中的预测分析[J]. 科学技术与工程, 2020, 20(28): 11442-11446. [3] 黄建华, 杨思, 吴波. 基于贝叶斯网络的基坑围护工程施工风险评估[J]. 武汉大学学报(工学版), 2016, 49(5): 733-739. [4] 寇润胜. 深基坑周边建筑物沉降预测及安全性评估[D]. 重庆: 重庆大学, 2014. [5] 刘晶磊, 张国朋, 张冲冲, 等. 基于误差分级迭代法的基坑变形预测[J]. 科学技术与工程, 2021, 21(14): 5822-5827. [6] 洪宇超, 钱建固, 叶源新, 等. 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43(增刊2): 108-111. [7] 邵勇, 陈从新, 鲁祖德, 等. 基于机器学习的深基坑人字形支护变形预测分析[J]. 岩土力学, 2020, 41(增刊2): 1-9. [8] 章润红. 考虑黏土各向异性的深基坑开挖响应及其参数反分析研究[D]. 重庆: 重庆大学, 2021. [9] 何亚涛. 基于机器学习的填海区深基坑变形预测模型研究[D]. 成都: 西南交通大学, 2021. [10] 刘贺, 张弘强, 刘斌. 基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1609-1614. [11] 李玉岐, 谢康和. 深基开挖引起的基坑变形预测与研究分析[J]. 工业建筑, 2004, 34(9): 19-21, 80. [12] 邓祥辉, 徐甜, 龚珍, 等. 基于模糊层次分析法的地铁深基坑施工风险评估[J]. 数学的实践与认识, 2017, 47(13): 136-142. [13] 夏元友, 陈春舒, 陈金培, 等. 基于现场监测的深基坑施工动态风险评估[J]. 地下空间与工程学报, 2016, 12(5): 1378-1384. [14] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. [15] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4): 1201-1206, 1210. [16] SAHLI A, BEHIRI W, BELMOKHTAR-BERRAF S, et al. An effective and robust genetic algorithm for urban freight transport scheduling using passenger rail network [J/OL]. Computers and Industrial Engineering, 2022, 173[2023-05-25]. https://doi.org/10.1016/j.cie.2022.108645. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778. [18] 张勇. 邻近既有地铁隧道的深基坑施工安全风险评估与控制研究[D]. 西安: 西安建筑科技大学, 2017. [19] 贾俊平. 统计学基础[M]. 北京:中国人民大学出版社, 2010. [20] 黄宏伟, 边亦海. 深基坑工程施工中的风险管理[J]. 地下空间与工程学报, 2005, 1(4):611-614, 645. [21] 中华人民共和国住房和城乡建设部. 建筑基坑工程监测技术标准: GB 50497—2019[S]. 北京: 中国计划出版社, 2019.
点击查看大图
计量
- 文章访问数: 34
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0