Experimental Research on Shear Performance of Joint Interface in Prefabricated Viaducts
-
摘要: 采用湿接缝连接的分节段施工是解决大体积预制混凝土高架桥构件运输、安装困难问题的最有效方法之一。为研究湿接缝处结合面的抗剪性能,考虑结合面连接筋、混凝土强度等级、结合面处理工艺等因素的影响,设计了4组12个试件进行双剪试验,并采用最小二乘法对扩展剪切摩擦理论公式中的结合面处理工艺机械咬合力系数c进行了拟合。研究结果表明:结合面的处理工艺对试件的抗剪承载能力有较大影响,露骨料组试件、止浆带组试件和凿毛组试件的承载力分别约为整浇组试件的92.7%~94.1%、82.7%~86.7%和66.7%~71.1%;结合面连接筋可以显著提高试件的延性、抗剪承载力和抗裂性,承载力提升幅度约为47.3%~65.0%;当试件达到极限状态时,结合面连接筋应变分布不均匀,所有连接筋的平均应变约为屈服应变的50%;各国规范的抗剪极限承载力计算值均远低于本次试验值,具有较高的富余度;所拟合的相关参数,可为工程应用提供参考。Abstract: The segmented construction with wet joints is one of the most effective methods to solve the transportation and installation difficulties of large prefabricated concrete viaduct components. To study the shear performance of the joint surface at the wet joint, four groups of 12 specimens were designed for double shear tests, taking into account the effects of reinforcement, concrete strength grade, joint surface roughing process, and other factors. The mechanical bite force coefficient c of the joint interface roughing process in the extended shear friction theory formula was fitted by using the least squares method. The research results showed that the joint surface roughing process had a significant influence on the shear bearing capacity of the specimens. The bearing capacity of the specimens with exposed aggregate, plastering strip, and chiseling surface roughing treatment were approximately 92.7% to 94.1%, 82.7% to 86.7%, and 66.7% to 71.1% of that of the monolithic specimens, respectively. The connecting rebars of joint surface could significantly improve the ductility, shear bearing capacity, and crack resistance of the specimens, and the increase in bearing capacity was about 47.3% to 65.0%. When the specimens reached the ultimate state, the strain distribution of the connecting rebars of joint surface was uneven, and the average strain of all the rebars was about 50% of the yield strain. The calculated values of the shear bearing capacity of various country codes were much lower than the test values, indicating a high safety margin. The fitted parameters could provide a reference for engineering applications.
-
[1] 崔亚军,李宏宇,段乐乐,等.高烈度地区倒T型预制盖梁湿接缝吊模体系施工技术[J].施工技术, 2020, 49(增刊1):947-950. [2] 王振领.新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究[D].成都:西南交通大学, 2007. [3] XIA J, SHAN K, WU X, et al. Shear-friction behavior of concrete-to-concrete interface under direct shear load[J]. Engineering Structures, 2021, 238:112211. [4] FAN J, WU L, ZHANG B. Influence of old concrete age, interface roughness and freeze-thawing attack on new-to-old concrete structure[J]. Materials, 2021, 14(5):1057. [5] 淡浩,吴体,肖承波,等.预制混凝土构件结合面抗剪性能试验及分析[J].建筑科学, 2020, 36(3):100-104. [6] HE Y, ZHANG X, HOOTON R D, et al. Effects of interface roughness and interface adhesion on new-to-old concrete bonding[J]. Construction and Building Materials, 2017, 151:582-590. [7] MAILI C, JING M. Experimental study on shear behavior of the interface between new and old concrete with reinforced[J]. KSCE Journal of Civil Engineering, 2018, 22:1882-1888. [8] 栾利影.预制构件结合面的构造设计与抗剪性能研究[D].南京:东南大学, 2018. [9] 赵志方,赵国藩,刘健,等.新老混凝土粘结抗拉性能的试验研究[J].建筑结构学报, 2001(2):51-56. [10] 冯峥,李传习,周佳乐,等.UHPC键齿湿接缝直剪试验及湿接缝直剪承载力统一公式[J].土木工程学报, 2022, 55(6):79-91. [11] 管东芝,陈子轩,蔺志一,等.先浇UHPC-后浇普通混凝土气泡膜式结合面受剪性能试验研究[J].建筑结构学报, 2021, 42(增刊1):426-432, 455. [12] 朱张峰,郭正兴,刘家彬,等.气泡膜成型的预制混凝土构件结合面受剪性能[J].土木工程学报, 2020, 53(7):21-27. [13] 宋守坛.高速铁路预制拼装箱梁桥抗弯及接缝抗剪试验研究与理论分析[D].南京:东南大学, 2015. [14] SOUDKI K A, RIZKALLA S H, LEBLANC B. Horizontal connections for precast concrete shear walls subjected to cyclic deformations part 1:mild steel connections[J]. PCI Journal, 1995, 40(4):78-96. [15] SOUDKI K A, RIZKALLA S H, DAIKIW R W. Horizontal connections for precast concrete shear walls subjected to cyclic deformations part 2:prestressed connections[J]. PCI Journal, 1995, 40(5):82-96. [16] KIM C G, PARK H G, HONG G H, et al. Shear strength of composite beams with dual concrete strengths[J]. ACI Structural Journal, 2016, 113(2):263-274. [17] KIM C G, PARK H G, HONG G H, et al. Shear strength of reinforced concrete-composite beams with prestressed concrete and non-prestressed concrete[J]. ACI Structural Journal, 2018, 115(4):917-930. [18] KYTÖLÄ U, ASP O, LAAKSONEN A. Negative bending tests on precast prestressed concrete beams made continuous[J]. Structural Concrete, 2021, 22(4):2223-2242. [19] 赵勇,邹仁博.高强混凝土新旧结合面抗剪性能试验[J].同济大学学报(自然科学版), 2017, 45(7):962-969. [20] RANDL N. Design recommendations for interface shear transfer in fib Model Code 2010[J]. Structural Concrete, 2013, 14(3):230-241. [21] 叶果.新老混凝土界面抗剪性能研究[D].重庆:重庆大学, 2011. [22] 田稳苓,宋昭,肖成志,等.带植筋新老混凝土粘结面剪切试验及有限元模拟分析[J].建筑结构, 2019, 49(23):127-133, 126. [23] American Association of State Highway and Transportation Officials. AASHTO LRFD bridge design specifications:AASHTO LRFD US-2014[S]. Washington, D C:AASHTO, 2014. [24] European Committee for Standardization. Eurocode 2:design of concrete structures-part 1-1:general rules and rules for buildings:EN 1992-1-1:2004[S]. Brussels:CEN, 2004. [25] 中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1-2014[S].北京:中国建筑工业出版社, 2018.
点击查看大图
计量
- 文章访问数: 61
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 0