Research on Interfacial Bonding Performance Between Geopolymer Concrete and GFRP Bars Based on Beam Test
-
摘要: 在"双碳"目标下,采用绿色低碳的地聚物混凝土替代高碳排放的硅酸盐水泥混凝土是目前的研究热点之一。以粉煤灰基地聚物混凝土为对象,基于梁式试验开展弯拉作用下地聚物混凝土-玻璃纤维增强复合材料(GFRP)筋界面黏结性能的研究,探明了不同混凝土强度、类型对地聚物混凝土-GFRP筋界面黏结性能的影响。结果表明:在与GFRP筋黏结的试验中,由于地聚物混凝土与硅酸盐水泥混凝土存在力学性能的差异,导致两者虽然有相似的破坏模式,但在不同混凝土强度下界面的破坏机制不同,黏结刚度、黏结强度随混凝土变化的规律也不同;对已有的XUE模型和Bimodal模型进行形状系数的修正,通过对比分析,建立适用于地聚物混凝土-GFRP筋的黏结滑移本构模型。Abstract: In the context of the "dual-carbon goals" strategy, the use of green and low-carbon geopolymer concrete instead of high-carbon emission Portland cement concrete is currently a hot research topic. This paper focused on fly ash-based geopolymer concrete and conducted a beam test to study the interfacial bonding performance between geopolymer concrete and glass fiber reinforced polymer (GFRP) bas under bending and tensile loads. The influence of different concrete strengths or types on the interfacial bonding performance between geopolymer concrete and GFRP bars was determined. The results showed that due to the difference in mechanical properties between geopolymer concrete and Portland cement concrete, although they showed similar failure modes in the tests with GFRP bars, the failure mechanism at the interface varied with different concrete strengths, and the bonding stiffness and strength also changed accordingly. Finally, the XUE model and Bimodal model were modified for shape factor, and a bond-slip constitutive model suitable for the interface between geopolymer concrete and GFRP bars was established through comparative analysis.
-
Key words:
- geopolymer concrete /
- GFRP bars /
- beam test /
- bond-slip /
- green and low-carbon
-
[1] 中国建筑材料工业碳排放报告(2020年度)[J]. 中国建材, 2021(4):59-62. [2] 丁美荣. 水泥行业碳排放现状分析与减排关键路径探讨[J]. 中国水泥, 2021(7):46-49. [3] 孙瑜, 王强, 童翊轩, 等. 带铝肋先张预应力复材筋混凝土梁的长期刚度[J]. 工业建筑, 2021,51(10):9-13. [4] 张石, 张爱林, 张艳霞, 等. 碳纤维增强复合材料筋混凝土框架结构动力性能试验研究[J]. 工业建筑, 2023,53(2):92-98. [5] 赵建伟, 崔潮, 戈娅萍, 等. 地质聚合物的土木工程耐久性能的研究进展[J]. 硅酸盐通报, 2016,35(9):2832-2840. [6] 范小春, 徐伟, 陈远程, 等. BFRP筋碱激发混凝土粘结性能试验研究与数值模拟[J]. 硅酸盐通报, 2022,41(6):1896-1911. [7] LI J, GRAVINA R J, SMITH S T, et al. Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability[J/OL]. Construction and Building Materials, 2020,261[2023-05-16]. https://doi.org/10.1016/j.conbuildmat.2020.119860. [8] Rilem. RILEM Technical Recommendations for the testing and use of construction materials[M]. London: Taylor and Francis, 1994. [9] Association C S. Design and construction of building component with fiber-reinforced polymers: CAN/CSA S806-12[S]. Rexdale, Ontario, Canada: 2012. [10] 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法:GB/T 30022—2013[S]. 北京: 中国标准出版社, 2014. [11] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. [12] American Society for Testing and Materials. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression:C469/C469M-22[S]. West Conshohocken: ASTM, 2022. [13] American Concrete Institute. Guide test methods for fibre-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures:ACI 440.3R-12[R]. Farmington Hills, MI: ACI, 2012. [14] VELJKOVIC A, CARVELLI V, HAFFKE M M, et al. Concrete cover effect on the bond of GFRP bar and concrete under static loading[J]. Composites Part B: Engineering, 2017,124:40-53. [15] PAN J, WU Y. Analytical modeling of bond behavior between FRP plate and concrete[J]. Composites Part B: Engineering, 2014,61:17-25. [16] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction, 1997,1(2):40-51. [17] 薛伟辰, 王圆, 方志庆. 黏砂变形GFRP筋与约束混凝土之间的黏结性能[J]. 建筑材料学报, 2013,16(1):6-11. [18] WEI W, LIU F, XIONG Z, et al. Bond performance between fibre-reinforced polymer bars and concrete under pull-out tests[J]. Construction and Building Materials, 2019,227,116803.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 4
- PDF下载量: 7
- 被引次数: 0