Research on Nondestructive Testing and Evaluation of Stiffness of Stone Arch Bridges Based on Modal Testing
-
摘要: 为探究环境激励下基于模态测试的无损检测方法评估古建筑桥梁结构刚度的可行性,以某跨径29 m的石拱桥为研究对象,依据有限元模型设计虚拟荷载试验,确定中载和偏载工况下满足工程精度要求的最少模态阶次;环境激励下采集石拱桥主梁的竖向振动信息并识别模态参数,进而识别结构的模态位移柔度矩阵;预测石拱桥在等效试验荷载作用下的模态挠度,与有限元模型设计挠度进行比较,计算挠度校验系数,结合现行规范评定桥梁刚度状况。结果表明,基于环境激励可以准确识别石拱桥的模态参数,中载工况下,只需2阶模态参数,偏载工况下,需要3阶模态参数预测的模态挠度便可满足工程精度要求;两种工况作用下,计算的桥梁跨中挠度校验系数均小于1,说明该石拱桥的实际状况较好;模态测试作为一种无损检测方法代替荷载试验评估古建筑石拱桥结构刚度具有较好的工程可行性。Abstract: In order to investigate the feasibility of a non-destructive testing method based on modal testing to assess the structural stiffness of ancient architectural bridges under environmental excitation, a 29 m span stone arch bridge was used as the research object, a virtual load test was designed based on the finite element model to determine the minimum modal order that meet the engineering accuracy requirements under symmetrical and eccentric load conditions; the vertical vibration information of the main girders of the stone arch bridge was collected under environmental excitation and the modal parameters were identified, and then the modal displacement flexibility matrix of the structure was identified; the modal deflection of the stone arch bridge under equivalent test load was predicted, compared with the design deflection of the finite element model, the deflection check factor was calculated, and the bridge stiffness condition was evaluated in conjunction with the current code. The results showed that the modal parameters of the stone arch bridge could be accurately identified based on the environmental excitation; the modal deflection predicted by the first two mode parameters could meet the engineering accuracy requirements under the symmetrical load condition and the first three mode parameters under the eccentric condition; the calculated mid-span deflection check coefficient was less than 1 under both conditions, which indicated that the actual condition of the bridge was better; modal testing, as a non-destructive testing method to replace load testing in evaluating the stiffness of ancient stone arch bridge structures, showed good engineering feasibility.
-
[1] WENZEL F, KAHLE M. Indirect methods of investigation for evaluating historic masonry[R]. Zurich: IABSE Reports,1993. [2] ONUR O. Impact of mechanical properties of historical masonry bridges on fundamental vibration frequency[J]. Structures,2020,27:1011-1028. [3] 亓兴军,孙绪法,周广利,等.基于模态测试的装配式简支梁桥等效荷载试验方法研究[J].地震工程与工程振动,2022,42(4):61-69. [4] 亓兴军,孙绪法,王珊珊,等.基于模态参数识别的简支梁桥模态挠度预测试验研究[J].建筑科学与工程学报,2023,40(5):129-137. [5] 亓兴军,孙绪法,王珊珊,等.基于附加质量块的桥梁模态挠度预测方法研究[J].振动与冲击,2022,41(19):104-113. [6] 亓兴军,孙绪法,赵越,等.基于环境激励的连续梁桥挠度评定方法研究[J].建筑科学与工程学报,2021,38(4):73-79. [7] CHEN G W, OMENZETTER P, BESKHYROUN S. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations[J]. Engineering Structures,2017,151(15):839-860. [8] CHIARA P, NICOLA C, VITTORIO G, et al. An integrated approach for the numerical modeling of severely damaged historic structures: application to a masonry bridge[J]. Advances in Engineering Software,2021,151(3),102935. [9] CHIARA P, GIOFFRè M, COMANDUCCI G, et al. Dynamic characterization of a severely damaged historic masonry bridge[J]. Procedia Engineering,2017,199:3398-3403. [10] 张宇天.基于无损检测和静载试验的桥梁结构安全性评估[D].武汉:湖北工业大学,2018. [11] 夏琪.基于冲击振动的桥梁快速测试方法与理论创新[D].南京:东南大学,2017. [12] 田永丁.基于环境振动的桥梁结构柔度识别与性能评估[D].南京:东南大学,2016. [13] 陈钊.车轮冲击力测量与桥梁性能快速评估[D].南京:东南大学,2017. [14] 亓兴军,杨洪超,张斌,等.正常交通下大跨斜拉桥主梁刚度评定的虚拟静载试验方法[J/OL].土木与环境工程学报(中英文), 2023,45[2023-12-02].https://kns.cnki.net/kcms2/article/abstract?v=Dm4VI7mKrXMNcqZlU8OjU6d WUsA2GGnw HylSmw478_T_cwdOFYgneLD4S0uHDY-3m_fPSEQLWoXI9 0fiah6olIMq7Wk4MG0rbPGyRNJzCJfuGwU265kBsEdE-Kbntb5z jixSiN. [15] 王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007. [16] GÖNEN S, SOYÖZ S. Seismic analysis of a masonry arch bridge using multiple methodologies[J]. Engineering Structures,2021,226(1),111354. [17] BORJA C, LUÍS F R, DANIEL V O, et al. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: application to Vilanova bridge[J]. Engineering Structures,2017,148:621-638. [18] BRINCKER R, VENTURA C, ANDERSEN P. Damping estimation by frequency domain decomposition [C]// Imac:A Conference on Structural Dynamic.2021. [19] OTELLO B, GIUSEPPE C, STEFANO D, et al. In-situ NDT testing procedure as an integral part of failure analysis of historical masonry arch bridges[J]. Engineering Failure Analysis,2015,57:31-55. [20] 刘宇飞,辛克贵,樊健生,等.环境激励下结构模态参数识别方法综述[J].工程力学,2014,31(4):46-53. [21] 中华人民共和国交通运输部.公路桥梁承载能力检测评定规程:JTG/T J21—2011[S].北京:人民交通出版社,2011.
点击查看大图
计量
- 文章访问数: 10
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0